freeswitch/libs/sofia-sip/libsofia-sip-ua/su/su_md5.c

492 lines
14 KiB
C
Raw Normal View History

#define compile \
{ gcc -o su_md5 -O2 -g -Wall -DTEST -I. su_md5.c } ; exit 0
/* -*- c-style: java -*- */
/*
* This file is part of the Sofia-SIP package
*
* Copyright (C) 2005 Nokia Corporation.
*
* Contact: Pekka Pessi <pekka.pessi@nokia.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
/*
* This code implements the MD5 message-digest algorithm. The algorithm is
* due to Ron Rivest. This code was initially written by Colin Plumb in
* 1993, no copyright is claimed. This code is in the public domain; do with
* it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc. This code has
* been tested against that, and is equivalent, except that you don't need
* to include two pages of legalese with every copy.
*/
/** @ingroup su_md5
*
* @CFILE su_md5.c MD5 Implementation
*
* To compute the message digest of a chunk of bytes, declare an su_md5_t
* context structure, pass it to su_md5_init(), call su_md5_update() as
* needed on buffers full of bytes, and then call su_md5_digest(), which
* will fill a supplied 16-byte array with the current digest.
*
* @note
* This code was modified in 1997 by Jim Kingdon of Cyclic Software to
* not require an integer type which is exactly 32 bits. This work
* draws on the changes for the same purpose by Tatu Ylonen
* <ylo@cs.hut.fi> as part of SSH, but since I didn't actually use
* that code, there is no copyright issue. I hereby disclaim
* copyright in any changes I have made; this code remains in the
* public domain.
*
* @note Regarding su_* namespace: this avoids potential conflicts
* with libraries such as some versions of Kerberos. No particular
* need to worry about whether the system supplies an MD5 library, as
* this file is only about 3k of object code.
*
*/
#include <string.h> /* for memcpy() and memset() */
#include "sofia-sip/su_md5.h"
static void su_md5_transform(uint32_t buf[4], const unsigned char inraw[64]);
/* Little-endian byte-swapping routines. Note that these do not depend on
the size of datatypes such as cvs_uint32, nor do they require us to
detect the endianness of the machine we are running on. It is possible
they should be macros for speed, but I would be surprised if they were a
performance bottleneck for MD5. These are inlined by any sane compiler,
anyways. */
static uint32_t getu32(const unsigned char *addr)
{
return (((((unsigned long)addr[3] << 8) | addr[2]) << 8)
| addr[1]) << 8 | addr[0];
}
static void putu32(uint32_t data, unsigned char *addr)
{
addr[0] = (unsigned char)data;
addr[1] = (unsigned char)(data >> 8);
addr[2] = (unsigned char)(data >> 16);
addr[3] = (unsigned char)(data >> 24);
}
/** Initialize MD5 context.
*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*
* @param ctx Pointer to context structure.
*/
void
su_md5_init(su_md5_t *ctx)
{
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/** Clear MD5 context.
*
* The function su_md5_deinit() clears MD5 context.
*
* @param context Pointer to MD5 context structure.
*/
void su_md5_deinit(su_md5_t *context)
{
memset(context, 0, sizeof *context);
}
/** Update MD5 context.
*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*
* @param ctx Pointer to context structure
* @param b Pointer to data
* @param len Length of @a b as bytes
*/
void
su_md5_update(su_md5_t *ctx,
void const *b,
usize_t len)
{
unsigned char const *buf = (unsigned char const *)b;
uint32_t t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = (t + ((uint32_t)len << 3)) & 0xffffffff) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += (uint32_t)(len >> 29);
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if ( t ) {
unsigned char *p = ctx->in + t;
t = 64 - t;
if (len < t) {
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
su_md5_transform (ctx->buf, ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64) {
su_md5_transform(ctx->buf, buf);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/** Copy memory, fix case to lower. */
static
void mem_i_cpy(unsigned char *d, unsigned char const *s, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z')
d[i] = s[i] + ('a' - 'A');
else
d[i] = s[i];
}
/**Update MD5 context.
*
* The function su_md5_iupdate() updates context to reflect the
* concatenation of another buffer full of case-independent characters.
*
* @param ctx Pointer to context structure
* @param b Pointer to data
* @param len Length of @a b as bytes
*/
void
su_md5_iupdate(su_md5_t *ctx,
void const *b,
usize_t len)
{
unsigned char const *buf = (unsigned char const *)b;
uint32_t t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = (t + ((uint32_t)len << 3)) & 0xffffffff) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += (uint32_t)(len >> 29);
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if ( t ) {
unsigned char *p = ctx->in + t;
t = sizeof(ctx->in) - t;
if (len < t) {
mem_i_cpy(p, buf, len);
return;
}
mem_i_cpy(p, buf, t);
su_md5_transform (ctx->buf, ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= sizeof(ctx->in)) {
mem_i_cpy(ctx->in, buf, sizeof(ctx->in));
su_md5_transform(ctx->buf, ctx->in);
buf += sizeof(ctx->in);
len -= sizeof(ctx->in);
}
/* Handle any remaining bytes of data. */
mem_i_cpy(ctx->in, buf, len);
}
/** Update MD5 context with contents of string.
*
* The function su_md5_strupdate() updates context to reflect the
* concatenation of NUL-terminated string.
*
* @param ctx Pointer to context structure
* @param s Pointer to string
*/
void su_md5_strupdate(su_md5_t *ctx, char const *s)
{
if (s)
su_md5_update(ctx, s, strlen(s));
}
/** Update MD5 context with contents of string, including final NUL.
*
* The function su_md5_str0update() updates context to reflect the
* concatenation of NUL-terminated string, including the final NUL.
*
* @param ctx Pointer to context structure
* @param s Pointer to string
*/
void su_md5_str0update(su_md5_t *ctx, char const *s)
{
if (!s)
s = "";
su_md5_update(ctx, s, strlen(s) + 1);
}
/** Update MD5 context with contents of case-independent string.
*
* The function su_md5_striupdate() updates context to reflect the
* concatenation of NUL-terminated string.
*
* @param ctx Pointer to context structure
* @param s Pointer to string
*/
void su_md5_striupdate(su_md5_t *ctx, char const *s)
{
if (s)
su_md5_iupdate(ctx, s, strlen(s));
}
/** Update MD5 context with contents of case-independent string, including
* final NUL.
*
* The function su_md5_stri0update() updates context to reflect the
* concatenation of NUL-terminated string, including the final NUL.
*
* @param ctx Pointer to context structure
* @param s Pointer to string
*/
void su_md5_stri0update(su_md5_t *ctx, char const *s)
{
if (!s)
s = "";
su_md5_iupdate(ctx, s, strlen(s) + 1);
}
/** Generate digest.
*
* Final wrapup. Pad message to 64-byte boundary with the bit pattern 1 0*
* (64-bit count of bits processed, MSB-first), then concatenate message
* with its length (measured in bits) as 64-byte big-endian integer.
*
* @param context Pointer to context structure
* @param digest Digest array to be filled
*/
void
su_md5_digest(su_md5_t const *context, uint8_t digest[16])
{
unsigned count;
unsigned char *p;
su_md5_t ctx[1];
ctx[0] = context[0];
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
su_md5_transform (ctx->buf, ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count-8);
}
/* Append length in bits and transform */
putu32(ctx->bits[0], ctx->in + 56);
putu32(ctx->bits[1], ctx->in + 60);
su_md5_transform(ctx->buf, ctx->in);
putu32(ctx->buf[0], digest);
putu32(ctx->buf[1], digest + 4);
putu32(ctx->buf[2], digest + 8);
putu32(ctx->buf[3], digest + 12);
memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
}
void su_md5_hexdigest(su_md5_t const *ctx,
char digest[2 * SU_MD5_DIGEST_SIZE + 1])
{
uint8_t b, bin[SU_MD5_DIGEST_SIZE];
short i, j;
su_md5_digest(ctx, bin);
for (i = j = 0; i < 16; i++) {
b = (bin[i] >> 4) & 15;
digest[j++] = b + (b > 9 ? 'a' - 10 : '0');
b = bin[i] & 15;
digest[j++] = b + (b > 9 ? 'a' - 10 : '0');
}
digest[j] = '\0';
}
#ifndef ASM_MD5
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w &= 0xffffffff, w = w<<s | w>>(32-s), w += x )
/** @internal
*
* Add 64 bytes of data to hash.
*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void
su_md5_transform(uint32_t buf[4], const unsigned char inraw[64])
{
register uint32_t a, b, c, d;
uint32_t in[16];
int i;
for (i = 0; i < 16; ++i)
in[i] = getu32 (inraw + 4 * i);
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
#endif