#define compile \ { gcc -o su_md5 -O2 -g -Wall -DTEST -I. su_md5.c } ; exit 0 /* -*- c-style: java -*- */ /* * This file is part of the Sofia-SIP package * * Copyright (C) 2005 Nokia Corporation. * * Contact: Pekka Pessi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * */ /* * This code implements the MD5 message-digest algorithm. The algorithm is * due to Ron Rivest. This code was initially written by Colin Plumb in * 1993, no copyright is claimed. This code is in the public domain; do with * it what you wish. * * Equivalent code is available from RSA Data Security, Inc. This code has * been tested against that, and is equivalent, except that you don't need * to include two pages of legalese with every copy. */ /** @ingroup su_md5 * * @CFILE su_md5.c MD5 Implementation * * To compute the message digest of a chunk of bytes, declare an su_md5_t * context structure, pass it to su_md5_init(), call su_md5_update() as * needed on buffers full of bytes, and then call su_md5_digest(), which * will fill a supplied 16-byte array with the current digest. * * @note * This code was modified in 1997 by Jim Kingdon of Cyclic Software to * not require an integer type which is exactly 32 bits. This work * draws on the changes for the same purpose by Tatu Ylonen * as part of SSH, but since I didn't actually use * that code, there is no copyright issue. I hereby disclaim * copyright in any changes I have made; this code remains in the * public domain. * * @note Regarding su_* namespace: this avoids potential conflicts * with libraries such as some versions of Kerberos. No particular * need to worry about whether the system supplies an MD5 library, as * this file is only about 3k of object code. * */ #include /* for memcpy() and memset() */ #include "sofia-sip/su_md5.h" static void su_md5_transform(uint32_t buf[4], const unsigned char inraw[64]); /* Little-endian byte-swapping routines. Note that these do not depend on the size of datatypes such as cvs_uint32, nor do they require us to detect the endianness of the machine we are running on. It is possible they should be macros for speed, but I would be surprised if they were a performance bottleneck for MD5. These are inlined by any sane compiler, anyways. */ static uint32_t getu32(const unsigned char *addr) { return (((((unsigned long)addr[3] << 8) | addr[2]) << 8) | addr[1]) << 8 | addr[0]; } static void putu32(uint32_t data, unsigned char *addr) { addr[0] = (unsigned char)data; addr[1] = (unsigned char)(data >> 8); addr[2] = (unsigned char)(data >> 16); addr[3] = (unsigned char)(data >> 24); } /** Initialize MD5 context. * * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. * * @param ctx Pointer to context structure. */ void su_md5_init(su_md5_t *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } /** Clear MD5 context. * * The function su_md5_deinit() clears MD5 context. * * @param context Pointer to MD5 context structure. */ void su_md5_deinit(su_md5_t *context) { memset(context, 0, sizeof *context); } /** Update MD5 context. * * Update context to reflect the concatenation of another buffer full * of bytes. * * @param ctx Pointer to context structure * @param b Pointer to data * @param len Length of @a b as bytes */ void su_md5_update(su_md5_t *ctx, void const *b, usize_t len) { unsigned char const *buf = (unsigned char const *)b; uint32_t t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = (t + ((uint32_t)len << 3)) & 0xffffffff) < t) ctx->bits[1]++; /* Carry from low to high */ ctx->bits[1] += (uint32_t)(len >> 29); t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if ( t ) { unsigned char *p = ctx->in + t; t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); su_md5_transform (ctx->buf, ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { su_md5_transform(ctx->buf, buf); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /** Copy memory, fix case to lower. */ static void mem_i_cpy(unsigned char *d, unsigned char const *s, size_t len) { size_t i; for (i = 0; i < len; i++) if (s[i] >= 'A' && s[i] <= 'Z') d[i] = s[i] + ('a' - 'A'); else d[i] = s[i]; } /**Update MD5 context. * * The function su_md5_iupdate() updates context to reflect the * concatenation of another buffer full of case-independent characters. * * @param ctx Pointer to context structure * @param b Pointer to data * @param len Length of @a b as bytes */ void su_md5_iupdate(su_md5_t *ctx, void const *b, usize_t len) { unsigned char const *buf = (unsigned char const *)b; uint32_t t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = (t + ((uint32_t)len << 3)) & 0xffffffff) < t) ctx->bits[1]++; /* Carry from low to high */ ctx->bits[1] += (uint32_t)(len >> 29); t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if ( t ) { unsigned char *p = ctx->in + t; t = sizeof(ctx->in) - t; if (len < t) { mem_i_cpy(p, buf, len); return; } mem_i_cpy(p, buf, t); su_md5_transform (ctx->buf, ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= sizeof(ctx->in)) { mem_i_cpy(ctx->in, buf, sizeof(ctx->in)); su_md5_transform(ctx->buf, ctx->in); buf += sizeof(ctx->in); len -= sizeof(ctx->in); } /* Handle any remaining bytes of data. */ mem_i_cpy(ctx->in, buf, len); } /** Update MD5 context with contents of string. * * The function su_md5_strupdate() updates context to reflect the * concatenation of NUL-terminated string. * * @param ctx Pointer to context structure * @param s Pointer to string */ void su_md5_strupdate(su_md5_t *ctx, char const *s) { if (s) su_md5_update(ctx, s, strlen(s)); } /** Update MD5 context with contents of string, including final NUL. * * The function su_md5_str0update() updates context to reflect the * concatenation of NUL-terminated string, including the final NUL. * * @param ctx Pointer to context structure * @param s Pointer to string */ void su_md5_str0update(su_md5_t *ctx, char const *s) { if (!s) s = ""; su_md5_update(ctx, s, strlen(s) + 1); } /** Update MD5 context with contents of case-independent string. * * The function su_md5_striupdate() updates context to reflect the * concatenation of NUL-terminated string. * * @param ctx Pointer to context structure * @param s Pointer to string */ void su_md5_striupdate(su_md5_t *ctx, char const *s) { if (s) su_md5_iupdate(ctx, s, strlen(s)); } /** Update MD5 context with contents of case-independent string, including * final NUL. * * The function su_md5_stri0update() updates context to reflect the * concatenation of NUL-terminated string, including the final NUL. * * @param ctx Pointer to context structure * @param s Pointer to string */ void su_md5_stri0update(su_md5_t *ctx, char const *s) { if (!s) s = ""; su_md5_iupdate(ctx, s, strlen(s) + 1); } /** Generate digest. * * Final wrapup. Pad message to 64-byte boundary with the bit pattern 1 0* * (64-bit count of bits processed, MSB-first), then concatenate message * with its length (measured in bits) as 64-byte big-endian integer. * * @param context Pointer to context structure * @param digest Digest array to be filled */ void su_md5_digest(su_md5_t const *context, uint8_t digest[16]) { unsigned count; unsigned char *p; su_md5_t ctx[1]; ctx[0] = context[0]; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); su_md5_transform (ctx->buf, ctx->in); /* Now fill the next block with 56 bytes */ memset(ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count-8); } /* Append length in bits and transform */ putu32(ctx->bits[0], ctx->in + 56); putu32(ctx->bits[1], ctx->in + 60); su_md5_transform(ctx->buf, ctx->in); putu32(ctx->buf[0], digest); putu32(ctx->buf[1], digest + 4); putu32(ctx->buf[2], digest + 8); putu32(ctx->buf[3], digest + 12); memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ } void su_md5_hexdigest(su_md5_t const *ctx, char digest[2 * SU_MD5_DIGEST_SIZE + 1]) { uint8_t b, bin[SU_MD5_DIGEST_SIZE]; short i, j; su_md5_digest(ctx, bin); for (i = j = 0; i < 16; i++) { b = (bin[i] >> 4) & 15; digest[j++] = b + (b > 9 ? 'a' - 10 : '0'); b = bin[i] & 15; digest[j++] = b + (b > 9 ? 'a' - 10 : '0'); } digest[j] = '\0'; } #ifndef ASM_MD5 /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w &= 0xffffffff, w = w<>(32-s), w += x ) /** @internal * * Add 64 bytes of data to hash. * * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void su_md5_transform(uint32_t buf[4], const unsigned char inraw[64]) { register uint32_t a, b, c, d; uint32_t in[16]; int i; for (i = 0; i < 16; ++i) in[i] = getu32 (inraw + 4 * i); a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } #endif