kernel-aes67/drivers/iio/adc/sc27xx_adc.c

971 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Spreadtrum Communications Inc.
#include <linux/hwspinlock.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
/* PMIC global registers definition */
#define SC2730_MODULE_EN 0x1808
#define SC2731_MODULE_EN 0xc08
#define SC27XX_MODULE_ADC_EN BIT(5)
#define SC2721_ARM_CLK_EN 0xc0c
#define SC2730_ARM_CLK_EN 0x180c
#define SC2731_ARM_CLK_EN 0xc10
#define SC27XX_CLK_ADC_EN BIT(5)
#define SC27XX_CLK_ADC_CLK_EN BIT(6)
/* ADC controller registers definition */
#define SC27XX_ADC_CTL 0x0
#define SC27XX_ADC_CH_CFG 0x4
#define SC27XX_ADC_DATA 0x4c
#define SC27XX_ADC_INT_EN 0x50
#define SC27XX_ADC_INT_CLR 0x54
#define SC27XX_ADC_INT_STS 0x58
#define SC27XX_ADC_INT_RAW 0x5c
/* Bits and mask definition for SC27XX_ADC_CTL register */
#define SC27XX_ADC_EN BIT(0)
#define SC27XX_ADC_CHN_RUN BIT(1)
#define SC27XX_ADC_12BIT_MODE BIT(2)
#define SC27XX_ADC_RUN_NUM_MASK GENMASK(7, 4)
#define SC27XX_ADC_RUN_NUM_SHIFT 4
/* Bits and mask definition for SC27XX_ADC_CH_CFG register */
#define SC27XX_ADC_CHN_ID_MASK GENMASK(4, 0)
#define SC27XX_ADC_SCALE_MASK GENMASK(10, 9)
#define SC2721_ADC_SCALE_MASK BIT(5)
#define SC27XX_ADC_SCALE_SHIFT 9
#define SC2721_ADC_SCALE_SHIFT 5
/* Bits definitions for SC27XX_ADC_INT_EN registers */
#define SC27XX_ADC_IRQ_EN BIT(0)
/* Bits definitions for SC27XX_ADC_INT_CLR registers */
#define SC27XX_ADC_IRQ_CLR BIT(0)
/* Bits definitions for SC27XX_ADC_INT_RAW registers */
#define SC27XX_ADC_IRQ_RAW BIT(0)
/* Mask definition for SC27XX_ADC_DATA register */
#define SC27XX_ADC_DATA_MASK GENMASK(11, 0)
/* Timeout (ms) for the trylock of hardware spinlocks */
#define SC27XX_ADC_HWLOCK_TIMEOUT 5000
/* Timeout (us) for ADC data conversion according to ADC datasheet */
#define SC27XX_ADC_RDY_TIMEOUT 1000000
#define SC27XX_ADC_POLL_RAW_STATUS 500
/* Maximum ADC channel number */
#define SC27XX_ADC_CHANNEL_MAX 32
/* ADC voltage ratio definition */
#define SC27XX_VOLT_RATIO(n, d) \
(((n) << SC27XX_RATIO_NUMERATOR_OFFSET) | (d))
#define SC27XX_RATIO_NUMERATOR_OFFSET 16
#define SC27XX_RATIO_DENOMINATOR_MASK GENMASK(15, 0)
/* ADC specific channel reference voltage 3.5V */
#define SC27XX_ADC_REFVOL_VDD35 3500000
/* ADC default channel reference voltage is 2.8V */
#define SC27XX_ADC_REFVOL_VDD28 2800000
struct sc27xx_adc_data {
struct device *dev;
struct regulator *volref;
struct regmap *regmap;
/* lock to protect against multiple access to the device */
struct mutex lock;
/*
* One hardware spinlock to synchronize between the multiple
* subsystems which will access the unique ADC controller.
*/
struct hwspinlock *hwlock;
int channel_scale[SC27XX_ADC_CHANNEL_MAX];
u32 base;
int irq;
const struct sc27xx_adc_variant_data *var_data;
};
/*
* Since different PMICs of SC27xx series can have different
* address and ratio, we should save ratio config and base
* in the device data structure.
*/
struct sc27xx_adc_variant_data {
u32 module_en;
u32 clk_en;
u32 scale_shift;
u32 scale_mask;
const struct sc27xx_adc_linear_graph *bscale_cal;
const struct sc27xx_adc_linear_graph *sscale_cal;
void (*init_scale)(struct sc27xx_adc_data *data);
int (*get_ratio)(int channel, int scale);
bool set_volref;
};
struct sc27xx_adc_linear_graph {
int volt0;
int adc0;
int volt1;
int adc1;
};
/*
* According to the datasheet, we can convert one ADC value to one voltage value
* through 2 points in the linear graph. If the voltage is less than 1.2v, we
* should use the small-scale graph, and if more than 1.2v, we should use the
* big-scale graph.
*/
static struct sc27xx_adc_linear_graph big_scale_graph = {
4200, 3310,
3600, 2832,
};
static struct sc27xx_adc_linear_graph small_scale_graph = {
1000, 3413,
100, 341,
};
static const struct sc27xx_adc_linear_graph sc2731_big_scale_graph_calib = {
4200, 850,
3600, 728,
};
static const struct sc27xx_adc_linear_graph sc2731_small_scale_graph_calib = {
1000, 838,
100, 84,
};
static const struct sc27xx_adc_linear_graph big_scale_graph_calib = {
4200, 856,
3600, 733,
};
static const struct sc27xx_adc_linear_graph small_scale_graph_calib = {
1000, 833,
100, 80,
};
static int sc27xx_adc_get_calib_data(u32 calib_data, int calib_adc)
{
return ((calib_data & 0xff) + calib_adc - 128) * 4;
}
/* get the adc nvmem cell calibration data */
static int adc_nvmem_cell_calib_data(struct sc27xx_adc_data *data, const char *cell_name)
{
struct nvmem_cell *cell;
void *buf;
u32 origin_calib_data = 0;
size_t len;
if (!data)
return -EINVAL;
cell = nvmem_cell_get(data->dev, cell_name);
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = nvmem_cell_read(cell, &len);
if (IS_ERR(buf)) {
nvmem_cell_put(cell);
return PTR_ERR(buf);
}
memcpy(&origin_calib_data, buf, min(len, sizeof(u32)));
kfree(buf);
nvmem_cell_put(cell);
return origin_calib_data;
}
static int sc27xx_adc_scale_calibration(struct sc27xx_adc_data *data,
bool big_scale)
{
const struct sc27xx_adc_linear_graph *calib_graph;
struct sc27xx_adc_linear_graph *graph;
const char *cell_name;
u32 calib_data = 0;
if (big_scale) {
calib_graph = data->var_data->bscale_cal;
graph = &big_scale_graph;
cell_name = "big_scale_calib";
} else {
calib_graph = data->var_data->sscale_cal;
graph = &small_scale_graph;
cell_name = "small_scale_calib";
}
calib_data = adc_nvmem_cell_calib_data(data, cell_name);
/* Only need to calibrate the adc values in the linear graph. */
graph->adc0 = sc27xx_adc_get_calib_data(calib_data, calib_graph->adc0);
graph->adc1 = sc27xx_adc_get_calib_data(calib_data >> 8,
calib_graph->adc1);
return 0;
}
static int sc2720_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 14:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(68, 900);
case 1:
return SC27XX_VOLT_RATIO(68, 1760);
case 2:
return SC27XX_VOLT_RATIO(68, 2327);
case 3:
return SC27XX_VOLT_RATIO(68, 3654);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 16:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(48, 100);
case 1:
return SC27XX_VOLT_RATIO(480, 1955);
case 2:
return SC27XX_VOLT_RATIO(480, 2586);
case 3:
return SC27XX_VOLT_RATIO(48, 406);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 21:
case 22:
case 23:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(3, 8);
case 1:
return SC27XX_VOLT_RATIO(375, 1955);
case 2:
return SC27XX_VOLT_RATIO(375, 2586);
case 3:
return SC27XX_VOLT_RATIO(300, 3248);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
default:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(1, 1);
case 1:
return SC27XX_VOLT_RATIO(1000, 1955);
case 2:
return SC27XX_VOLT_RATIO(1000, 2586);
case 3:
return SC27XX_VOLT_RATIO(100, 406);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
}
return SC27XX_VOLT_RATIO(1, 1);
}
static int sc2721_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 1:
case 2:
case 3:
case 4:
return scale ? SC27XX_VOLT_RATIO(400, 1025) :
SC27XX_VOLT_RATIO(1, 1);
case 5:
return SC27XX_VOLT_RATIO(7, 29);
case 7:
case 9:
return scale ? SC27XX_VOLT_RATIO(100, 125) :
SC27XX_VOLT_RATIO(1, 1);
case 14:
return SC27XX_VOLT_RATIO(68, 900);
case 16:
return SC27XX_VOLT_RATIO(48, 100);
case 19:
return SC27XX_VOLT_RATIO(1, 3);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
return SC27XX_VOLT_RATIO(1, 1);
}
static int sc2730_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 14:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(68, 900);
case 1:
return SC27XX_VOLT_RATIO(68, 1760);
case 2:
return SC27XX_VOLT_RATIO(68, 2327);
case 3:
return SC27XX_VOLT_RATIO(68, 3654);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 15:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(1, 3);
case 1:
return SC27XX_VOLT_RATIO(1000, 5865);
case 2:
return SC27XX_VOLT_RATIO(500, 3879);
case 3:
return SC27XX_VOLT_RATIO(500, 6090);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 16:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(48, 100);
case 1:
return SC27XX_VOLT_RATIO(480, 1955);
case 2:
return SC27XX_VOLT_RATIO(480, 2586);
case 3:
return SC27XX_VOLT_RATIO(48, 406);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 21:
case 22:
case 23:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(3, 8);
case 1:
return SC27XX_VOLT_RATIO(375, 1955);
case 2:
return SC27XX_VOLT_RATIO(375, 2586);
case 3:
return SC27XX_VOLT_RATIO(300, 3248);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
default:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(1, 1);
case 1:
return SC27XX_VOLT_RATIO(1000, 1955);
case 2:
return SC27XX_VOLT_RATIO(1000, 2586);
case 3:
return SC27XX_VOLT_RATIO(1000, 4060);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
}
return SC27XX_VOLT_RATIO(1, 1);
}
static int sc2731_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 1:
case 2:
case 3:
case 4:
return scale ? SC27XX_VOLT_RATIO(400, 1025) :
SC27XX_VOLT_RATIO(1, 1);
case 5:
return SC27XX_VOLT_RATIO(7, 29);
case 6:
return SC27XX_VOLT_RATIO(375, 9000);
case 7:
case 8:
return scale ? SC27XX_VOLT_RATIO(100, 125) :
SC27XX_VOLT_RATIO(1, 1);
case 19:
return SC27XX_VOLT_RATIO(1, 3);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
return SC27XX_VOLT_RATIO(1, 1);
}
/*
* According to the datasheet set specific value on some channel.
*/
static void sc2720_adc_scale_init(struct sc27xx_adc_data *data)
{
int i;
for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
switch (i) {
case 5:
data->channel_scale[i] = 3;
break;
case 7:
case 9:
data->channel_scale[i] = 2;
break;
case 13:
data->channel_scale[i] = 1;
break;
case 19:
case 30:
case 31:
data->channel_scale[i] = 3;
break;
default:
data->channel_scale[i] = 0;
break;
}
}
}
static void sc2730_adc_scale_init(struct sc27xx_adc_data *data)
{
int i;
for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
switch (i) {
case 5:
case 10:
case 19:
case 30:
case 31:
data->channel_scale[i] = 3;
break;
case 7:
case 9:
data->channel_scale[i] = 2;
break;
case 13:
data->channel_scale[i] = 1;
break;
default:
data->channel_scale[i] = 0;
break;
}
}
}
static void sc2731_adc_scale_init(struct sc27xx_adc_data *data)
{
int i;
/*
* In the current software design, SC2731 support 2 scales,
* channels 5 uses big scale, others use smale.
*/
for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
switch (i) {
case 5:
data->channel_scale[i] = 1;
break;
default:
data->channel_scale[i] = 0;
break;
}
}
}
static int sc27xx_adc_read(struct sc27xx_adc_data *data, int channel,
int scale, int *val)
{
int ret, ret_volref;
u32 tmp, value, status;
ret = hwspin_lock_timeout_raw(data->hwlock, SC27XX_ADC_HWLOCK_TIMEOUT);
if (ret) {
dev_err(data->dev, "timeout to get the hwspinlock\n");
return ret;
}
/*
* According to the sc2721 chip data sheet, the reference voltage of
* specific channel 30 and channel 31 in ADC module needs to be set from
* the default 2.8v to 3.5v.
*/
if ((data->var_data->set_volref) && (channel == 30 || channel == 31)) {
ret = regulator_set_voltage(data->volref,
SC27XX_ADC_REFVOL_VDD35,
SC27XX_ADC_REFVOL_VDD35);
if (ret) {
dev_err(data->dev, "failed to set the volref 3.5v\n");
goto unlock_adc;
}
}
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_EN, SC27XX_ADC_EN);
if (ret)
goto regulator_restore;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_INT_CLR,
SC27XX_ADC_IRQ_CLR, SC27XX_ADC_IRQ_CLR);
if (ret)
goto disable_adc;
/* Configure the channel id and scale */
tmp = (scale << data->var_data->scale_shift) & data->var_data->scale_mask;
tmp |= channel & SC27XX_ADC_CHN_ID_MASK;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CH_CFG,
SC27XX_ADC_CHN_ID_MASK |
data->var_data->scale_mask,
tmp);
if (ret)
goto disable_adc;
/* Select 12bit conversion mode, and only sample 1 time */
tmp = SC27XX_ADC_12BIT_MODE;
tmp |= (0 << SC27XX_ADC_RUN_NUM_SHIFT) & SC27XX_ADC_RUN_NUM_MASK;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_RUN_NUM_MASK | SC27XX_ADC_12BIT_MODE,
tmp);
if (ret)
goto disable_adc;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_CHN_RUN, SC27XX_ADC_CHN_RUN);
if (ret)
goto disable_adc;
ret = regmap_read_poll_timeout(data->regmap,
data->base + SC27XX_ADC_INT_RAW,
status, (status & SC27XX_ADC_IRQ_RAW),
SC27XX_ADC_POLL_RAW_STATUS,
SC27XX_ADC_RDY_TIMEOUT);
if (ret) {
dev_err(data->dev, "read adc timeout, status = 0x%x\n", status);
goto disable_adc;
}
ret = regmap_read(data->regmap, data->base + SC27XX_ADC_DATA, &value);
if (ret)
goto disable_adc;
value &= SC27XX_ADC_DATA_MASK;
disable_adc:
regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_EN, 0);
regulator_restore:
if ((data->var_data->set_volref) && (channel == 30 || channel == 31)) {
ret_volref = regulator_set_voltage(data->volref,
SC27XX_ADC_REFVOL_VDD28,
SC27XX_ADC_REFVOL_VDD28);
if (ret_volref) {
dev_err(data->dev, "failed to set the volref 2.8v,ret_volref = 0x%x\n",
ret_volref);
ret = ret || ret_volref;
}
}
unlock_adc:
hwspin_unlock_raw(data->hwlock);
if (!ret)
*val = value;
return ret;
}
static void sc27xx_adc_volt_ratio(struct sc27xx_adc_data *data, int channel, int scale,
struct u32_fract *fract)
{
u32 ratio;
ratio = data->var_data->get_ratio(channel, scale);
fract->numerator = ratio >> SC27XX_RATIO_NUMERATOR_OFFSET;
fract->denominator = ratio & SC27XX_RATIO_DENOMINATOR_MASK;
}
static int adc_to_volt(struct sc27xx_adc_linear_graph *graph,
int raw_adc)
{
int tmp;
tmp = (graph->volt0 - graph->volt1) * (raw_adc - graph->adc1);
tmp /= (graph->adc0 - graph->adc1);
tmp += graph->volt1;
return tmp;
}
static int sc27xx_adc_to_volt(struct sc27xx_adc_linear_graph *graph,
int raw_adc)
{
int tmp;
tmp = adc_to_volt(graph, raw_adc);
return tmp < 0 ? 0 : tmp;
}
static int sc27xx_adc_convert_volt(struct sc27xx_adc_data *data, int channel,
int scale, int raw_adc)
{
struct u32_fract fract;
u32 volt;
/*
* Convert ADC values to voltage values according to the linear graph,
* and channel 5 and channel 1 has been calibrated, so we can just
* return the voltage values calculated by the linear graph. But other
* channels need be calculated to the real voltage values with the
* voltage ratio.
*/
switch (channel) {
case 5:
return sc27xx_adc_to_volt(&big_scale_graph, raw_adc);
case 1:
return sc27xx_adc_to_volt(&small_scale_graph, raw_adc);
default:
volt = sc27xx_adc_to_volt(&small_scale_graph, raw_adc);
break;
}
sc27xx_adc_volt_ratio(data, channel, scale, &fract);
return DIV_ROUND_CLOSEST(volt * fract.denominator, fract.numerator);
}
static int sc27xx_adc_read_processed(struct sc27xx_adc_data *data,
int channel, int scale, int *val)
{
int ret, raw_adc;
ret = sc27xx_adc_read(data, channel, scale, &raw_adc);
if (ret)
return ret;
*val = sc27xx_adc_convert_volt(data, channel, scale, raw_adc);
return 0;
}
static int sc27xx_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct sc27xx_adc_data *data = iio_priv(indio_dev);
int scale = data->channel_scale[chan->channel];
int ret, tmp;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&data->lock);
ret = sc27xx_adc_read(data, chan->channel, scale, &tmp);
mutex_unlock(&data->lock);
if (ret)
return ret;
*val = tmp;
return IIO_VAL_INT;
case IIO_CHAN_INFO_PROCESSED:
mutex_lock(&data->lock);
ret = sc27xx_adc_read_processed(data, chan->channel, scale,
&tmp);
mutex_unlock(&data->lock);
if (ret)
return ret;
*val = tmp;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = scale;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int sc27xx_adc_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct sc27xx_adc_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
data->channel_scale[chan->channel] = val;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static const struct iio_info sc27xx_info = {
.read_raw = &sc27xx_adc_read_raw,
.write_raw = &sc27xx_adc_write_raw,
};
#define SC27XX_ADC_CHANNEL(index, mask) { \
.type = IIO_VOLTAGE, \
.channel = index, \
.info_mask_separate = mask | BIT(IIO_CHAN_INFO_SCALE), \
.datasheet_name = "CH##index", \
.indexed = 1, \
}
static const struct iio_chan_spec sc27xx_channels[] = {
SC27XX_ADC_CHANNEL(0, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(1, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(2, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(3, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(4, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(5, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(6, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(7, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(8, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(9, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(10, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(11, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(12, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(13, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(14, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(15, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(16, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(17, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(18, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(19, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(20, BIT(IIO_CHAN_INFO_RAW)),
SC27XX_ADC_CHANNEL(21, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(22, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(23, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(24, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(25, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(26, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(27, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(28, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(29, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(30, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(31, BIT(IIO_CHAN_INFO_PROCESSED)),
};
static int sc27xx_adc_enable(struct sc27xx_adc_data *data)
{
int ret;
ret = regmap_update_bits(data->regmap, data->var_data->module_en,
SC27XX_MODULE_ADC_EN, SC27XX_MODULE_ADC_EN);
if (ret)
return ret;
/* Enable ADC work clock and controller clock */
ret = regmap_update_bits(data->regmap, data->var_data->clk_en,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN);
if (ret)
goto disable_adc;
/* ADC channel scales' calibration from nvmem device */
ret = sc27xx_adc_scale_calibration(data, true);
if (ret)
goto disable_clk;
ret = sc27xx_adc_scale_calibration(data, false);
if (ret)
goto disable_clk;
return 0;
disable_clk:
regmap_update_bits(data->regmap, data->var_data->clk_en,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0);
disable_adc:
regmap_update_bits(data->regmap, data->var_data->module_en,
SC27XX_MODULE_ADC_EN, 0);
return ret;
}
static void sc27xx_adc_disable(void *_data)
{
struct sc27xx_adc_data *data = _data;
/* Disable ADC work clock and controller clock */
regmap_update_bits(data->regmap, data->var_data->clk_en,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0);
regmap_update_bits(data->regmap, data->var_data->module_en,
SC27XX_MODULE_ADC_EN, 0);
}
static const struct sc27xx_adc_variant_data sc2731_data = {
.module_en = SC2731_MODULE_EN,
.clk_en = SC2731_ARM_CLK_EN,
.scale_shift = SC27XX_ADC_SCALE_SHIFT,
.scale_mask = SC27XX_ADC_SCALE_MASK,
.bscale_cal = &sc2731_big_scale_graph_calib,
.sscale_cal = &sc2731_small_scale_graph_calib,
.init_scale = sc2731_adc_scale_init,
.get_ratio = sc2731_adc_get_ratio,
.set_volref = false,
};
static const struct sc27xx_adc_variant_data sc2730_data = {
.module_en = SC2730_MODULE_EN,
.clk_en = SC2730_ARM_CLK_EN,
.scale_shift = SC27XX_ADC_SCALE_SHIFT,
.scale_mask = SC27XX_ADC_SCALE_MASK,
.bscale_cal = &big_scale_graph_calib,
.sscale_cal = &small_scale_graph_calib,
.init_scale = sc2730_adc_scale_init,
.get_ratio = sc2730_adc_get_ratio,
.set_volref = false,
};
static const struct sc27xx_adc_variant_data sc2721_data = {
.module_en = SC2731_MODULE_EN,
.clk_en = SC2721_ARM_CLK_EN,
.scale_shift = SC2721_ADC_SCALE_SHIFT,
.scale_mask = SC2721_ADC_SCALE_MASK,
.bscale_cal = &sc2731_big_scale_graph_calib,
.sscale_cal = &sc2731_small_scale_graph_calib,
.init_scale = sc2731_adc_scale_init,
.get_ratio = sc2721_adc_get_ratio,
.set_volref = true,
};
static const struct sc27xx_adc_variant_data sc2720_data = {
.module_en = SC2731_MODULE_EN,
.clk_en = SC2721_ARM_CLK_EN,
.scale_shift = SC27XX_ADC_SCALE_SHIFT,
.scale_mask = SC27XX_ADC_SCALE_MASK,
.bscale_cal = &big_scale_graph_calib,
.sscale_cal = &small_scale_graph_calib,
.init_scale = sc2720_adc_scale_init,
.get_ratio = sc2720_adc_get_ratio,
.set_volref = false,
};
static int sc27xx_adc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct sc27xx_adc_data *sc27xx_data;
const struct sc27xx_adc_variant_data *pdata;
struct iio_dev *indio_dev;
int ret;
pdata = of_device_get_match_data(dev);
if (!pdata) {
dev_err(dev, "No matching driver data found\n");
return -EINVAL;
}
indio_dev = devm_iio_device_alloc(dev, sizeof(*sc27xx_data));
if (!indio_dev)
return -ENOMEM;
sc27xx_data = iio_priv(indio_dev);
sc27xx_data->regmap = dev_get_regmap(dev->parent, NULL);
if (!sc27xx_data->regmap) {
dev_err(dev, "failed to get ADC regmap\n");
return -ENODEV;
}
ret = of_property_read_u32(np, "reg", &sc27xx_data->base);
if (ret) {
dev_err(dev, "failed to get ADC base address\n");
return ret;
}
sc27xx_data->irq = platform_get_irq(pdev, 0);
if (sc27xx_data->irq < 0)
return sc27xx_data->irq;
ret = of_hwspin_lock_get_id(np, 0);
if (ret < 0) {
dev_err(dev, "failed to get hwspinlock id\n");
return ret;
}
sc27xx_data->hwlock = devm_hwspin_lock_request_specific(dev, ret);
if (!sc27xx_data->hwlock) {
dev_err(dev, "failed to request hwspinlock\n");
return -ENXIO;
}
sc27xx_data->dev = dev;
if (pdata->set_volref) {
sc27xx_data->volref = devm_regulator_get(dev, "vref");
if (IS_ERR(sc27xx_data->volref)) {
ret = PTR_ERR(sc27xx_data->volref);
return dev_err_probe(dev, ret, "failed to get ADC volref\n");
}
}
sc27xx_data->var_data = pdata;
sc27xx_data->var_data->init_scale(sc27xx_data);
ret = sc27xx_adc_enable(sc27xx_data);
if (ret) {
dev_err(dev, "failed to enable ADC module\n");
return ret;
}
ret = devm_add_action_or_reset(dev, sc27xx_adc_disable, sc27xx_data);
if (ret) {
dev_err(dev, "failed to add ADC disable action\n");
return ret;
}
indio_dev->name = dev_name(dev);
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &sc27xx_info;
indio_dev->channels = sc27xx_channels;
indio_dev->num_channels = ARRAY_SIZE(sc27xx_channels);
mutex_init(&sc27xx_data->lock);
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
dev_err(dev, "could not register iio (ADC)");
return ret;
}
static const struct of_device_id sc27xx_adc_of_match[] = {
{ .compatible = "sprd,sc2731-adc", .data = &sc2731_data},
{ .compatible = "sprd,sc2730-adc", .data = &sc2730_data},
{ .compatible = "sprd,sc2721-adc", .data = &sc2721_data},
{ .compatible = "sprd,sc2720-adc", .data = &sc2720_data},
{ }
};
MODULE_DEVICE_TABLE(of, sc27xx_adc_of_match);
static struct platform_driver sc27xx_adc_driver = {
.probe = sc27xx_adc_probe,
.driver = {
.name = "sc27xx-adc",
.of_match_table = sc27xx_adc_of_match,
},
};
module_platform_driver(sc27xx_adc_driver);
MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>");
MODULE_DESCRIPTION("Spreadtrum SC27XX ADC Driver");
MODULE_LICENSE("GPL v2");