kernel-aes67/mm/swap.c
Rafael J. Wysocki 8bb7844286 Add suspend-related notifications for CPU hotplug
Since nonboot CPUs are now disabled after tasks and devices have been
frozen and the CPU hotplug infrastructure is used for this purpose, we need
special CPU hotplug notifications that will help the CPU-hotplug-aware
subsystems distinguish normal CPU hotplug events from CPU hotplug events
related to a system-wide suspend or resume operation in progress.  This
patch introduces such notifications and causes them to be used during
suspend and resume transitions.  It also changes all of the
CPU-hotplug-aware subsystems to take these notifications into consideration
(for now they are handled in the same way as the corresponding "normal"
ones).

[oleg@tv-sign.ru: cleanups]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 12:30:56 -07:00

521 lines
12 KiB
C

/*
* linux/mm/swap.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*/
/*
* This file contains the default values for the opereation of the
* Linux VM subsystem. Fine-tuning documentation can be found in
* Documentation/sysctl/vm.txt.
* Started 18.12.91
* Swap aging added 23.2.95, Stephen Tweedie.
* Buffermem limits added 12.3.98, Rik van Riel.
*/
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/pagevec.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm_inline.h>
#include <linux/buffer_head.h> /* for try_to_release_page() */
#include <linux/module.h>
#include <linux/percpu_counter.h>
#include <linux/percpu.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/init.h>
/* How many pages do we try to swap or page in/out together? */
int page_cluster;
/*
* This path almost never happens for VM activity - pages are normally
* freed via pagevecs. But it gets used by networking.
*/
static void fastcall __page_cache_release(struct page *page)
{
if (PageLRU(page)) {
unsigned long flags;
struct zone *zone = page_zone(page);
spin_lock_irqsave(&zone->lru_lock, flags);
VM_BUG_ON(!PageLRU(page));
__ClearPageLRU(page);
del_page_from_lru(zone, page);
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
free_hot_page(page);
}
static void put_compound_page(struct page *page)
{
page = compound_head(page);
if (put_page_testzero(page)) {
compound_page_dtor *dtor;
dtor = get_compound_page_dtor(page);
(*dtor)(page);
}
}
void put_page(struct page *page)
{
if (unlikely(PageCompound(page)))
put_compound_page(page);
else if (put_page_testzero(page))
__page_cache_release(page);
}
EXPORT_SYMBOL(put_page);
/**
* put_pages_list(): release a list of pages
*
* Release a list of pages which are strung together on page.lru. Currently
* used by read_cache_pages() and related error recovery code.
*
* @pages: list of pages threaded on page->lru
*/
void put_pages_list(struct list_head *pages)
{
while (!list_empty(pages)) {
struct page *victim;
victim = list_entry(pages->prev, struct page, lru);
list_del(&victim->lru);
page_cache_release(victim);
}
}
EXPORT_SYMBOL(put_pages_list);
/*
* Writeback is about to end against a page which has been marked for immediate
* reclaim. If it still appears to be reclaimable, move it to the tail of the
* inactive list. The page still has PageWriteback set, which will pin it.
*
* We don't expect many pages to come through here, so don't bother batching
* things up.
*
* To avoid placing the page at the tail of the LRU while PG_writeback is still
* set, this function will clear PG_writeback before performing the page
* motion. Do that inside the lru lock because once PG_writeback is cleared
* we may not touch the page.
*
* Returns zero if it cleared PG_writeback.
*/
int rotate_reclaimable_page(struct page *page)
{
struct zone *zone;
unsigned long flags;
if (PageLocked(page))
return 1;
if (PageDirty(page))
return 1;
if (PageActive(page))
return 1;
if (!PageLRU(page))
return 1;
zone = page_zone(page);
spin_lock_irqsave(&zone->lru_lock, flags);
if (PageLRU(page) && !PageActive(page)) {
list_move_tail(&page->lru, &zone->inactive_list);
__count_vm_event(PGROTATED);
}
if (!test_clear_page_writeback(page))
BUG();
spin_unlock_irqrestore(&zone->lru_lock, flags);
return 0;
}
/*
* FIXME: speed this up?
*/
void fastcall activate_page(struct page *page)
{
struct zone *zone = page_zone(page);
spin_lock_irq(&zone->lru_lock);
if (PageLRU(page) && !PageActive(page)) {
del_page_from_inactive_list(zone, page);
SetPageActive(page);
add_page_to_active_list(zone, page);
__count_vm_event(PGACTIVATE);
}
spin_unlock_irq(&zone->lru_lock);
}
/*
* Mark a page as having seen activity.
*
* inactive,unreferenced -> inactive,referenced
* inactive,referenced -> active,unreferenced
* active,unreferenced -> active,referenced
*/
void fastcall mark_page_accessed(struct page *page)
{
if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
activate_page(page);
ClearPageReferenced(page);
} else if (!PageReferenced(page)) {
SetPageReferenced(page);
}
}
EXPORT_SYMBOL(mark_page_accessed);
/**
* lru_cache_add: add a page to the page lists
* @page: the page to add
*/
static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
void fastcall lru_cache_add(struct page *page)
{
struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
page_cache_get(page);
if (!pagevec_add(pvec, page))
__pagevec_lru_add(pvec);
put_cpu_var(lru_add_pvecs);
}
void fastcall lru_cache_add_active(struct page *page)
{
struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
page_cache_get(page);
if (!pagevec_add(pvec, page))
__pagevec_lru_add_active(pvec);
put_cpu_var(lru_add_active_pvecs);
}
static void __lru_add_drain(int cpu)
{
struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
/* CPU is dead, so no locking needed. */
if (pagevec_count(pvec))
__pagevec_lru_add(pvec);
pvec = &per_cpu(lru_add_active_pvecs, cpu);
if (pagevec_count(pvec))
__pagevec_lru_add_active(pvec);
}
void lru_add_drain(void)
{
__lru_add_drain(get_cpu());
put_cpu();
}
#ifdef CONFIG_NUMA
static void lru_add_drain_per_cpu(struct work_struct *dummy)
{
lru_add_drain();
}
/*
* Returns 0 for success
*/
int lru_add_drain_all(void)
{
return schedule_on_each_cpu(lru_add_drain_per_cpu);
}
#else
/*
* Returns 0 for success
*/
int lru_add_drain_all(void)
{
lru_add_drain();
return 0;
}
#endif
/*
* Batched page_cache_release(). Decrement the reference count on all the
* passed pages. If it fell to zero then remove the page from the LRU and
* free it.
*
* Avoid taking zone->lru_lock if possible, but if it is taken, retain it
* for the remainder of the operation.
*
* The locking in this function is against shrink_cache(): we recheck the
* page count inside the lock to see whether shrink_cache grabbed the page
* via the LRU. If it did, give up: shrink_cache will free it.
*/
void release_pages(struct page **pages, int nr, int cold)
{
int i;
struct pagevec pages_to_free;
struct zone *zone = NULL;
pagevec_init(&pages_to_free, cold);
for (i = 0; i < nr; i++) {
struct page *page = pages[i];
if (unlikely(PageCompound(page))) {
if (zone) {
spin_unlock_irq(&zone->lru_lock);
zone = NULL;
}
put_compound_page(page);
continue;
}
if (!put_page_testzero(page))
continue;
if (PageLRU(page)) {
struct zone *pagezone = page_zone(page);
if (pagezone != zone) {
if (zone)
spin_unlock_irq(&zone->lru_lock);
zone = pagezone;
spin_lock_irq(&zone->lru_lock);
}
VM_BUG_ON(!PageLRU(page));
__ClearPageLRU(page);
del_page_from_lru(zone, page);
}
if (!pagevec_add(&pages_to_free, page)) {
if (zone) {
spin_unlock_irq(&zone->lru_lock);
zone = NULL;
}
__pagevec_free(&pages_to_free);
pagevec_reinit(&pages_to_free);
}
}
if (zone)
spin_unlock_irq(&zone->lru_lock);
pagevec_free(&pages_to_free);
}
/*
* The pages which we're about to release may be in the deferred lru-addition
* queues. That would prevent them from really being freed right now. That's
* OK from a correctness point of view but is inefficient - those pages may be
* cache-warm and we want to give them back to the page allocator ASAP.
*
* So __pagevec_release() will drain those queues here. __pagevec_lru_add()
* and __pagevec_lru_add_active() call release_pages() directly to avoid
* mutual recursion.
*/
void __pagevec_release(struct pagevec *pvec)
{
lru_add_drain();
release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
pagevec_reinit(pvec);
}
EXPORT_SYMBOL(__pagevec_release);
/*
* pagevec_release() for pages which are known to not be on the LRU
*
* This function reinitialises the caller's pagevec.
*/
void __pagevec_release_nonlru(struct pagevec *pvec)
{
int i;
struct pagevec pages_to_free;
pagevec_init(&pages_to_free, pvec->cold);
for (i = 0; i < pagevec_count(pvec); i++) {
struct page *page = pvec->pages[i];
VM_BUG_ON(PageLRU(page));
if (put_page_testzero(page))
pagevec_add(&pages_to_free, page);
}
pagevec_free(&pages_to_free);
pagevec_reinit(pvec);
}
/*
* Add the passed pages to the LRU, then drop the caller's refcount
* on them. Reinitialises the caller's pagevec.
*/
void __pagevec_lru_add(struct pagevec *pvec)
{
int i;
struct zone *zone = NULL;
for (i = 0; i < pagevec_count(pvec); i++) {
struct page *page = pvec->pages[i];
struct zone *pagezone = page_zone(page);
if (pagezone != zone) {
if (zone)
spin_unlock_irq(&zone->lru_lock);
zone = pagezone;
spin_lock_irq(&zone->lru_lock);
}
VM_BUG_ON(PageLRU(page));
SetPageLRU(page);
add_page_to_inactive_list(zone, page);
}
if (zone)
spin_unlock_irq(&zone->lru_lock);
release_pages(pvec->pages, pvec->nr, pvec->cold);
pagevec_reinit(pvec);
}
EXPORT_SYMBOL(__pagevec_lru_add);
void __pagevec_lru_add_active(struct pagevec *pvec)
{
int i;
struct zone *zone = NULL;
for (i = 0; i < pagevec_count(pvec); i++) {
struct page *page = pvec->pages[i];
struct zone *pagezone = page_zone(page);
if (pagezone != zone) {
if (zone)
spin_unlock_irq(&zone->lru_lock);
zone = pagezone;
spin_lock_irq(&zone->lru_lock);
}
VM_BUG_ON(PageLRU(page));
SetPageLRU(page);
VM_BUG_ON(PageActive(page));
SetPageActive(page);
add_page_to_active_list(zone, page);
}
if (zone)
spin_unlock_irq(&zone->lru_lock);
release_pages(pvec->pages, pvec->nr, pvec->cold);
pagevec_reinit(pvec);
}
/*
* Try to drop buffers from the pages in a pagevec
*/
void pagevec_strip(struct pagevec *pvec)
{
int i;
for (i = 0; i < pagevec_count(pvec); i++) {
struct page *page = pvec->pages[i];
if (PagePrivate(page) && !TestSetPageLocked(page)) {
if (PagePrivate(page))
try_to_release_page(page, 0);
unlock_page(page);
}
}
}
/**
* pagevec_lookup - gang pagecache lookup
* @pvec: Where the resulting pages are placed
* @mapping: The address_space to search
* @start: The starting page index
* @nr_pages: The maximum number of pages
*
* pagevec_lookup() will search for and return a group of up to @nr_pages pages
* in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
* reference against the pages in @pvec.
*
* The search returns a group of mapping-contiguous pages with ascending
* indexes. There may be holes in the indices due to not-present pages.
*
* pagevec_lookup() returns the number of pages which were found.
*/
unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
pgoff_t start, unsigned nr_pages)
{
pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
return pagevec_count(pvec);
}
EXPORT_SYMBOL(pagevec_lookup);
unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
pgoff_t *index, int tag, unsigned nr_pages)
{
pvec->nr = find_get_pages_tag(mapping, index, tag,
nr_pages, pvec->pages);
return pagevec_count(pvec);
}
EXPORT_SYMBOL(pagevec_lookup_tag);
#ifdef CONFIG_SMP
/*
* We tolerate a little inaccuracy to avoid ping-ponging the counter between
* CPUs
*/
#define ACCT_THRESHOLD max(16, NR_CPUS * 2)
static DEFINE_PER_CPU(long, committed_space) = 0;
void vm_acct_memory(long pages)
{
long *local;
preempt_disable();
local = &__get_cpu_var(committed_space);
*local += pages;
if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
atomic_add(*local, &vm_committed_space);
*local = 0;
}
preempt_enable();
}
#ifdef CONFIG_HOTPLUG_CPU
/* Drop the CPU's cached committed space back into the central pool. */
static int cpu_swap_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
long *committed;
committed = &per_cpu(committed_space, (long)hcpu);
if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
atomic_add(*committed, &vm_committed_space);
*committed = 0;
__lru_add_drain((long)hcpu);
}
return NOTIFY_OK;
}
#endif /* CONFIG_HOTPLUG_CPU */
#endif /* CONFIG_SMP */
/*
* Perform any setup for the swap system
*/
void __init swap_setup(void)
{
unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
/* Use a smaller cluster for small-memory machines */
if (megs < 16)
page_cluster = 2;
else
page_cluster = 3;
/*
* Right now other parts of the system means that we
* _really_ don't want to cluster much more
*/
#ifdef CONFIG_HOTPLUG_CPU
hotcpu_notifier(cpu_swap_callback, 0);
#endif
}