kernel-aes67/fs/nilfs2/inode.c
Kent Overstreet a27bb332c0 aio: don't include aio.h in sched.h
Faster kernel compiles by way of fewer unnecessary includes.

[akpm@linux-foundation.org: fix fallout]
[akpm@linux-foundation.org: fix build]
Signed-off-by: Kent Overstreet <koverstreet@google.com>
Cc: Zach Brown <zab@redhat.com>
Cc: Felipe Balbi <balbi@ti.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Asai Thambi S P <asamymuthupa@micron.com>
Cc: Selvan Mani <smani@micron.com>
Cc: Sam Bradshaw <sbradshaw@micron.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Reviewed-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-07 20:16:25 -07:00

1097 lines
29 KiB
C

/*
* inode.c - NILFS inode operations.
*
* Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Written by Ryusuke Konishi <ryusuke@osrg.net>
*
*/
#include <linux/buffer_head.h>
#include <linux/gfp.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/aio.h>
#include "nilfs.h"
#include "btnode.h"
#include "segment.h"
#include "page.h"
#include "mdt.h"
#include "cpfile.h"
#include "ifile.h"
/**
* struct nilfs_iget_args - arguments used during comparison between inodes
* @ino: inode number
* @cno: checkpoint number
* @root: pointer on NILFS root object (mounted checkpoint)
* @for_gc: inode for GC flag
*/
struct nilfs_iget_args {
u64 ino;
__u64 cno;
struct nilfs_root *root;
int for_gc;
};
void nilfs_inode_add_blocks(struct inode *inode, int n)
{
struct nilfs_root *root = NILFS_I(inode)->i_root;
inode_add_bytes(inode, (1 << inode->i_blkbits) * n);
if (root)
atomic_add(n, &root->blocks_count);
}
void nilfs_inode_sub_blocks(struct inode *inode, int n)
{
struct nilfs_root *root = NILFS_I(inode)->i_root;
inode_sub_bytes(inode, (1 << inode->i_blkbits) * n);
if (root)
atomic_sub(n, &root->blocks_count);
}
/**
* nilfs_get_block() - get a file block on the filesystem (callback function)
* @inode - inode struct of the target file
* @blkoff - file block number
* @bh_result - buffer head to be mapped on
* @create - indicate whether allocating the block or not when it has not
* been allocated yet.
*
* This function does not issue actual read request of the specified data
* block. It is done by VFS.
*/
int nilfs_get_block(struct inode *inode, sector_t blkoff,
struct buffer_head *bh_result, int create)
{
struct nilfs_inode_info *ii = NILFS_I(inode);
struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
__u64 blknum = 0;
int err = 0, ret;
unsigned maxblocks = bh_result->b_size >> inode->i_blkbits;
down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks);
up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
if (ret >= 0) { /* found */
map_bh(bh_result, inode->i_sb, blknum);
if (ret > 0)
bh_result->b_size = (ret << inode->i_blkbits);
goto out;
}
/* data block was not found */
if (ret == -ENOENT && create) {
struct nilfs_transaction_info ti;
bh_result->b_blocknr = 0;
err = nilfs_transaction_begin(inode->i_sb, &ti, 1);
if (unlikely(err))
goto out;
err = nilfs_bmap_insert(ii->i_bmap, (unsigned long)blkoff,
(unsigned long)bh_result);
if (unlikely(err != 0)) {
if (err == -EEXIST) {
/*
* The get_block() function could be called
* from multiple callers for an inode.
* However, the page having this block must
* be locked in this case.
*/
printk(KERN_WARNING
"nilfs_get_block: a race condition "
"while inserting a data block. "
"(inode number=%lu, file block "
"offset=%llu)\n",
inode->i_ino,
(unsigned long long)blkoff);
err = 0;
}
nilfs_transaction_abort(inode->i_sb);
goto out;
}
nilfs_mark_inode_dirty(inode);
nilfs_transaction_commit(inode->i_sb); /* never fails */
/* Error handling should be detailed */
set_buffer_new(bh_result);
set_buffer_delay(bh_result);
map_bh(bh_result, inode->i_sb, 0); /* dbn must be changed
to proper value */
} else if (ret == -ENOENT) {
/* not found is not error (e.g. hole); must return without
the mapped state flag. */
;
} else {
err = ret;
}
out:
return err;
}
/**
* nilfs_readpage() - implement readpage() method of nilfs_aops {}
* address_space_operations.
* @file - file struct of the file to be read
* @page - the page to be read
*/
static int nilfs_readpage(struct file *file, struct page *page)
{
return mpage_readpage(page, nilfs_get_block);
}
/**
* nilfs_readpages() - implement readpages() method of nilfs_aops {}
* address_space_operations.
* @file - file struct of the file to be read
* @mapping - address_space struct used for reading multiple pages
* @pages - the pages to be read
* @nr_pages - number of pages to be read
*/
static int nilfs_readpages(struct file *file, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
return mpage_readpages(mapping, pages, nr_pages, nilfs_get_block);
}
static int nilfs_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
int err = 0;
if (inode->i_sb->s_flags & MS_RDONLY) {
nilfs_clear_dirty_pages(mapping, false);
return -EROFS;
}
if (wbc->sync_mode == WB_SYNC_ALL)
err = nilfs_construct_dsync_segment(inode->i_sb, inode,
wbc->range_start,
wbc->range_end);
return err;
}
static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
int err;
if (inode->i_sb->s_flags & MS_RDONLY) {
/*
* It means that filesystem was remounted in read-only
* mode because of error or metadata corruption. But we
* have dirty pages that try to be flushed in background.
* So, here we simply discard this dirty page.
*/
nilfs_clear_dirty_page(page, false);
unlock_page(page);
return -EROFS;
}
redirty_page_for_writepage(wbc, page);
unlock_page(page);
if (wbc->sync_mode == WB_SYNC_ALL) {
err = nilfs_construct_segment(inode->i_sb);
if (unlikely(err))
return err;
} else if (wbc->for_reclaim)
nilfs_flush_segment(inode->i_sb, inode->i_ino);
return 0;
}
static int nilfs_set_page_dirty(struct page *page)
{
int ret = __set_page_dirty_buffers(page);
if (ret) {
struct inode *inode = page->mapping->host;
unsigned nr_dirty = 1 << (PAGE_SHIFT - inode->i_blkbits);
nilfs_set_file_dirty(inode, nr_dirty);
}
return ret;
}
void nilfs_write_failed(struct address_space *mapping, loff_t to)
{
struct inode *inode = mapping->host;
if (to > inode->i_size) {
truncate_pagecache(inode, to, inode->i_size);
nilfs_truncate(inode);
}
}
static int nilfs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
int err = nilfs_transaction_begin(inode->i_sb, NULL, 1);
if (unlikely(err))
return err;
err = block_write_begin(mapping, pos, len, flags, pagep,
nilfs_get_block);
if (unlikely(err)) {
nilfs_write_failed(mapping, pos + len);
nilfs_transaction_abort(inode->i_sb);
}
return err;
}
static int nilfs_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = mapping->host;
unsigned start = pos & (PAGE_CACHE_SIZE - 1);
unsigned nr_dirty;
int err;
nr_dirty = nilfs_page_count_clean_buffers(page, start,
start + copied);
copied = generic_write_end(file, mapping, pos, len, copied, page,
fsdata);
nilfs_set_file_dirty(inode, nr_dirty);
err = nilfs_transaction_commit(inode->i_sb);
return err ? : copied;
}
static ssize_t
nilfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
loff_t offset, unsigned long nr_segs)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = file->f_mapping->host;
ssize_t size;
if (rw == WRITE)
return 0;
/* Needs synchronization with the cleaner */
size = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
nilfs_get_block);
/*
* In case of error extending write may have instantiated a few
* blocks outside i_size. Trim these off again.
*/
if (unlikely((rw & WRITE) && size < 0)) {
loff_t isize = i_size_read(inode);
loff_t end = offset + iov_length(iov, nr_segs);
if (end > isize)
nilfs_write_failed(mapping, end);
}
return size;
}
const struct address_space_operations nilfs_aops = {
.writepage = nilfs_writepage,
.readpage = nilfs_readpage,
.writepages = nilfs_writepages,
.set_page_dirty = nilfs_set_page_dirty,
.readpages = nilfs_readpages,
.write_begin = nilfs_write_begin,
.write_end = nilfs_write_end,
/* .releasepage = nilfs_releasepage, */
.invalidatepage = block_invalidatepage,
.direct_IO = nilfs_direct_IO,
.is_partially_uptodate = block_is_partially_uptodate,
};
struct inode *nilfs_new_inode(struct inode *dir, umode_t mode)
{
struct super_block *sb = dir->i_sb;
struct the_nilfs *nilfs = sb->s_fs_info;
struct inode *inode;
struct nilfs_inode_info *ii;
struct nilfs_root *root;
int err = -ENOMEM;
ino_t ino;
inode = new_inode(sb);
if (unlikely(!inode))
goto failed;
mapping_set_gfp_mask(inode->i_mapping,
mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
root = NILFS_I(dir)->i_root;
ii = NILFS_I(inode);
ii->i_state = 1 << NILFS_I_NEW;
ii->i_root = root;
err = nilfs_ifile_create_inode(root->ifile, &ino, &ii->i_bh);
if (unlikely(err))
goto failed_ifile_create_inode;
/* reference count of i_bh inherits from nilfs_mdt_read_block() */
atomic_inc(&root->inodes_count);
inode_init_owner(inode, dir, mode);
inode->i_ino = ino;
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) {
err = nilfs_bmap_read(ii->i_bmap, NULL);
if (err < 0)
goto failed_bmap;
set_bit(NILFS_I_BMAP, &ii->i_state);
/* No lock is needed; iget() ensures it. */
}
ii->i_flags = nilfs_mask_flags(
mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED);
/* ii->i_file_acl = 0; */
/* ii->i_dir_acl = 0; */
ii->i_dir_start_lookup = 0;
nilfs_set_inode_flags(inode);
spin_lock(&nilfs->ns_next_gen_lock);
inode->i_generation = nilfs->ns_next_generation++;
spin_unlock(&nilfs->ns_next_gen_lock);
insert_inode_hash(inode);
err = nilfs_init_acl(inode, dir);
if (unlikely(err))
goto failed_acl; /* never occur. When supporting
nilfs_init_acl(), proper cancellation of
above jobs should be considered */
return inode;
failed_acl:
failed_bmap:
clear_nlink(inode);
iput(inode); /* raw_inode will be deleted through
generic_delete_inode() */
goto failed;
failed_ifile_create_inode:
make_bad_inode(inode);
iput(inode); /* if i_nlink == 1, generic_forget_inode() will be
called */
failed:
return ERR_PTR(err);
}
void nilfs_set_inode_flags(struct inode *inode)
{
unsigned int flags = NILFS_I(inode)->i_flags;
inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
S_DIRSYNC);
if (flags & FS_SYNC_FL)
inode->i_flags |= S_SYNC;
if (flags & FS_APPEND_FL)
inode->i_flags |= S_APPEND;
if (flags & FS_IMMUTABLE_FL)
inode->i_flags |= S_IMMUTABLE;
if (flags & FS_NOATIME_FL)
inode->i_flags |= S_NOATIME;
if (flags & FS_DIRSYNC_FL)
inode->i_flags |= S_DIRSYNC;
mapping_set_gfp_mask(inode->i_mapping,
mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
}
int nilfs_read_inode_common(struct inode *inode,
struct nilfs_inode *raw_inode)
{
struct nilfs_inode_info *ii = NILFS_I(inode);
int err;
inode->i_mode = le16_to_cpu(raw_inode->i_mode);
i_uid_write(inode, le32_to_cpu(raw_inode->i_uid));
i_gid_write(inode, le32_to_cpu(raw_inode->i_gid));
set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
inode->i_size = le64_to_cpu(raw_inode->i_size);
inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
if (inode->i_nlink == 0 && inode->i_mode == 0)
return -EINVAL; /* this inode is deleted */
inode->i_blocks = le64_to_cpu(raw_inode->i_blocks);
ii->i_flags = le32_to_cpu(raw_inode->i_flags);
#if 0
ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
ii->i_dir_acl = S_ISREG(inode->i_mode) ?
0 : le32_to_cpu(raw_inode->i_dir_acl);
#endif
ii->i_dir_start_lookup = 0;
inode->i_generation = le32_to_cpu(raw_inode->i_generation);
if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)) {
err = nilfs_bmap_read(ii->i_bmap, raw_inode);
if (err < 0)
return err;
set_bit(NILFS_I_BMAP, &ii->i_state);
/* No lock is needed; iget() ensures it. */
}
return 0;
}
static int __nilfs_read_inode(struct super_block *sb,
struct nilfs_root *root, unsigned long ino,
struct inode *inode)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct buffer_head *bh;
struct nilfs_inode *raw_inode;
int err;
down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh);
if (unlikely(err))
goto bad_inode;
raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh);
err = nilfs_read_inode_common(inode, raw_inode);
if (err)
goto failed_unmap;
if (S_ISREG(inode->i_mode)) {
inode->i_op = &nilfs_file_inode_operations;
inode->i_fop = &nilfs_file_operations;
inode->i_mapping->a_ops = &nilfs_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &nilfs_dir_inode_operations;
inode->i_fop = &nilfs_dir_operations;
inode->i_mapping->a_ops = &nilfs_aops;
} else if (S_ISLNK(inode->i_mode)) {
inode->i_op = &nilfs_symlink_inode_operations;
inode->i_mapping->a_ops = &nilfs_aops;
} else {
inode->i_op = &nilfs_special_inode_operations;
init_special_inode(
inode, inode->i_mode,
huge_decode_dev(le64_to_cpu(raw_inode->i_device_code)));
}
nilfs_ifile_unmap_inode(root->ifile, ino, bh);
brelse(bh);
up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
nilfs_set_inode_flags(inode);
return 0;
failed_unmap:
nilfs_ifile_unmap_inode(root->ifile, ino, bh);
brelse(bh);
bad_inode:
up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
return err;
}
static int nilfs_iget_test(struct inode *inode, void *opaque)
{
struct nilfs_iget_args *args = opaque;
struct nilfs_inode_info *ii;
if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root)
return 0;
ii = NILFS_I(inode);
if (!test_bit(NILFS_I_GCINODE, &ii->i_state))
return !args->for_gc;
return args->for_gc && args->cno == ii->i_cno;
}
static int nilfs_iget_set(struct inode *inode, void *opaque)
{
struct nilfs_iget_args *args = opaque;
inode->i_ino = args->ino;
if (args->for_gc) {
NILFS_I(inode)->i_state = 1 << NILFS_I_GCINODE;
NILFS_I(inode)->i_cno = args->cno;
NILFS_I(inode)->i_root = NULL;
} else {
if (args->root && args->ino == NILFS_ROOT_INO)
nilfs_get_root(args->root);
NILFS_I(inode)->i_root = args->root;
}
return 0;
}
struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root,
unsigned long ino)
{
struct nilfs_iget_args args = {
.ino = ino, .root = root, .cno = 0, .for_gc = 0
};
return ilookup5(sb, ino, nilfs_iget_test, &args);
}
struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root,
unsigned long ino)
{
struct nilfs_iget_args args = {
.ino = ino, .root = root, .cno = 0, .for_gc = 0
};
return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
}
struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root,
unsigned long ino)
{
struct inode *inode;
int err;
inode = nilfs_iget_locked(sb, root, ino);
if (unlikely(!inode))
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
err = __nilfs_read_inode(sb, root, ino, inode);
if (unlikely(err)) {
iget_failed(inode);
return ERR_PTR(err);
}
unlock_new_inode(inode);
return inode;
}
struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino,
__u64 cno)
{
struct nilfs_iget_args args = {
.ino = ino, .root = NULL, .cno = cno, .for_gc = 1
};
struct inode *inode;
int err;
inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
if (unlikely(!inode))
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
err = nilfs_init_gcinode(inode);
if (unlikely(err)) {
iget_failed(inode);
return ERR_PTR(err);
}
unlock_new_inode(inode);
return inode;
}
void nilfs_write_inode_common(struct inode *inode,
struct nilfs_inode *raw_inode, int has_bmap)
{
struct nilfs_inode_info *ii = NILFS_I(inode);
raw_inode->i_mode = cpu_to_le16(inode->i_mode);
raw_inode->i_uid = cpu_to_le32(i_uid_read(inode));
raw_inode->i_gid = cpu_to_le32(i_gid_read(inode));
raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
raw_inode->i_size = cpu_to_le64(inode->i_size);
raw_inode->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
raw_inode->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
raw_inode->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
raw_inode->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
raw_inode->i_blocks = cpu_to_le64(inode->i_blocks);
raw_inode->i_flags = cpu_to_le32(ii->i_flags);
raw_inode->i_generation = cpu_to_le32(inode->i_generation);
if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) {
struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
/* zero-fill unused portion in the case of super root block */
raw_inode->i_xattr = 0;
raw_inode->i_pad = 0;
memset((void *)raw_inode + sizeof(*raw_inode), 0,
nilfs->ns_inode_size - sizeof(*raw_inode));
}
if (has_bmap)
nilfs_bmap_write(ii->i_bmap, raw_inode);
else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
raw_inode->i_device_code =
cpu_to_le64(huge_encode_dev(inode->i_rdev));
/* When extending inode, nilfs->ns_inode_size should be checked
for substitutions of appended fields */
}
void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh)
{
ino_t ino = inode->i_ino;
struct nilfs_inode_info *ii = NILFS_I(inode);
struct inode *ifile = ii->i_root->ifile;
struct nilfs_inode *raw_inode;
raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh);
if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state))
memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size);
set_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
nilfs_write_inode_common(inode, raw_inode, 0);
/* XXX: call with has_bmap = 0 is a workaround to avoid
deadlock of bmap. This delays update of i_bmap to just
before writing */
nilfs_ifile_unmap_inode(ifile, ino, ibh);
}
#define NILFS_MAX_TRUNCATE_BLOCKS 16384 /* 64MB for 4KB block */
static void nilfs_truncate_bmap(struct nilfs_inode_info *ii,
unsigned long from)
{
unsigned long b;
int ret;
if (!test_bit(NILFS_I_BMAP, &ii->i_state))
return;
repeat:
ret = nilfs_bmap_last_key(ii->i_bmap, &b);
if (ret == -ENOENT)
return;
else if (ret < 0)
goto failed;
if (b < from)
return;
b -= min_t(unsigned long, NILFS_MAX_TRUNCATE_BLOCKS, b - from);
ret = nilfs_bmap_truncate(ii->i_bmap, b);
nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb);
if (!ret || (ret == -ENOMEM &&
nilfs_bmap_truncate(ii->i_bmap, b) == 0))
goto repeat;
failed:
nilfs_warning(ii->vfs_inode.i_sb, __func__,
"failed to truncate bmap (ino=%lu, err=%d)",
ii->vfs_inode.i_ino, ret);
}
void nilfs_truncate(struct inode *inode)
{
unsigned long blkoff;
unsigned int blocksize;
struct nilfs_transaction_info ti;
struct super_block *sb = inode->i_sb;
struct nilfs_inode_info *ii = NILFS_I(inode);
if (!test_bit(NILFS_I_BMAP, &ii->i_state))
return;
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
return;
blocksize = sb->s_blocksize;
blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits;
nilfs_transaction_begin(sb, &ti, 0); /* never fails */
block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block);
nilfs_truncate_bmap(ii, blkoff);
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
if (IS_SYNC(inode))
nilfs_set_transaction_flag(NILFS_TI_SYNC);
nilfs_mark_inode_dirty(inode);
nilfs_set_file_dirty(inode, 0);
nilfs_transaction_commit(sb);
/* May construct a logical segment and may fail in sync mode.
But truncate has no return value. */
}
static void nilfs_clear_inode(struct inode *inode)
{
struct nilfs_inode_info *ii = NILFS_I(inode);
struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
/*
* Free resources allocated in nilfs_read_inode(), here.
*/
BUG_ON(!list_empty(&ii->i_dirty));
brelse(ii->i_bh);
ii->i_bh = NULL;
if (mdi && mdi->mi_palloc_cache)
nilfs_palloc_destroy_cache(inode);
if (test_bit(NILFS_I_BMAP, &ii->i_state))
nilfs_bmap_clear(ii->i_bmap);
nilfs_btnode_cache_clear(&ii->i_btnode_cache);
if (ii->i_root && inode->i_ino == NILFS_ROOT_INO)
nilfs_put_root(ii->i_root);
}
void nilfs_evict_inode(struct inode *inode)
{
struct nilfs_transaction_info ti;
struct super_block *sb = inode->i_sb;
struct nilfs_inode_info *ii = NILFS_I(inode);
int ret;
if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) {
if (inode->i_data.nrpages)
truncate_inode_pages(&inode->i_data, 0);
clear_inode(inode);
nilfs_clear_inode(inode);
return;
}
nilfs_transaction_begin(sb, &ti, 0); /* never fails */
if (inode->i_data.nrpages)
truncate_inode_pages(&inode->i_data, 0);
/* TODO: some of the following operations may fail. */
nilfs_truncate_bmap(ii, 0);
nilfs_mark_inode_dirty(inode);
clear_inode(inode);
ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino);
if (!ret)
atomic_dec(&ii->i_root->inodes_count);
nilfs_clear_inode(inode);
if (IS_SYNC(inode))
nilfs_set_transaction_flag(NILFS_TI_SYNC);
nilfs_transaction_commit(sb);
/* May construct a logical segment and may fail in sync mode.
But delete_inode has no return value. */
}
int nilfs_setattr(struct dentry *dentry, struct iattr *iattr)
{
struct nilfs_transaction_info ti;
struct inode *inode = dentry->d_inode;
struct super_block *sb = inode->i_sb;
int err;
err = inode_change_ok(inode, iattr);
if (err)
return err;
err = nilfs_transaction_begin(sb, &ti, 0);
if (unlikely(err))
return err;
if ((iattr->ia_valid & ATTR_SIZE) &&
iattr->ia_size != i_size_read(inode)) {
inode_dio_wait(inode);
truncate_setsize(inode, iattr->ia_size);
nilfs_truncate(inode);
}
setattr_copy(inode, iattr);
mark_inode_dirty(inode);
if (iattr->ia_valid & ATTR_MODE) {
err = nilfs_acl_chmod(inode);
if (unlikely(err))
goto out_err;
}
return nilfs_transaction_commit(sb);
out_err:
nilfs_transaction_abort(sb);
return err;
}
int nilfs_permission(struct inode *inode, int mask)
{
struct nilfs_root *root = NILFS_I(inode)->i_root;
if ((mask & MAY_WRITE) && root &&
root->cno != NILFS_CPTREE_CURRENT_CNO)
return -EROFS; /* snapshot is not writable */
return generic_permission(inode, mask);
}
int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh)
{
struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
struct nilfs_inode_info *ii = NILFS_I(inode);
int err;
spin_lock(&nilfs->ns_inode_lock);
if (ii->i_bh == NULL) {
spin_unlock(&nilfs->ns_inode_lock);
err = nilfs_ifile_get_inode_block(ii->i_root->ifile,
inode->i_ino, pbh);
if (unlikely(err))
return err;
spin_lock(&nilfs->ns_inode_lock);
if (ii->i_bh == NULL)
ii->i_bh = *pbh;
else {
brelse(*pbh);
*pbh = ii->i_bh;
}
} else
*pbh = ii->i_bh;
get_bh(*pbh);
spin_unlock(&nilfs->ns_inode_lock);
return 0;
}
int nilfs_inode_dirty(struct inode *inode)
{
struct nilfs_inode_info *ii = NILFS_I(inode);
struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
int ret = 0;
if (!list_empty(&ii->i_dirty)) {
spin_lock(&nilfs->ns_inode_lock);
ret = test_bit(NILFS_I_DIRTY, &ii->i_state) ||
test_bit(NILFS_I_BUSY, &ii->i_state);
spin_unlock(&nilfs->ns_inode_lock);
}
return ret;
}
int nilfs_set_file_dirty(struct inode *inode, unsigned nr_dirty)
{
struct nilfs_inode_info *ii = NILFS_I(inode);
struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
atomic_add(nr_dirty, &nilfs->ns_ndirtyblks);
if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state))
return 0;
spin_lock(&nilfs->ns_inode_lock);
if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
!test_bit(NILFS_I_BUSY, &ii->i_state)) {
/* Because this routine may race with nilfs_dispose_list(),
we have to check NILFS_I_QUEUED here, too. */
if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) {
/* This will happen when somebody is freeing
this inode. */
nilfs_warning(inode->i_sb, __func__,
"cannot get inode (ino=%lu)\n",
inode->i_ino);
spin_unlock(&nilfs->ns_inode_lock);
return -EINVAL; /* NILFS_I_DIRTY may remain for
freeing inode */
}
list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files);
set_bit(NILFS_I_QUEUED, &ii->i_state);
}
spin_unlock(&nilfs->ns_inode_lock);
return 0;
}
int nilfs_mark_inode_dirty(struct inode *inode)
{
struct buffer_head *ibh;
int err;
err = nilfs_load_inode_block(inode, &ibh);
if (unlikely(err)) {
nilfs_warning(inode->i_sb, __func__,
"failed to reget inode block.\n");
return err;
}
nilfs_update_inode(inode, ibh);
mark_buffer_dirty(ibh);
nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile);
brelse(ibh);
return 0;
}
/**
* nilfs_dirty_inode - reflect changes on given inode to an inode block.
* @inode: inode of the file to be registered.
*
* nilfs_dirty_inode() loads a inode block containing the specified
* @inode and copies data from a nilfs_inode to a corresponding inode
* entry in the inode block. This operation is excluded from the segment
* construction. This function can be called both as a single operation
* and as a part of indivisible file operations.
*/
void nilfs_dirty_inode(struct inode *inode, int flags)
{
struct nilfs_transaction_info ti;
struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
if (is_bad_inode(inode)) {
nilfs_warning(inode->i_sb, __func__,
"tried to mark bad_inode dirty. ignored.\n");
dump_stack();
return;
}
if (mdi) {
nilfs_mdt_mark_dirty(inode);
return;
}
nilfs_transaction_begin(inode->i_sb, &ti, 0);
nilfs_mark_inode_dirty(inode);
nilfs_transaction_commit(inode->i_sb); /* never fails */
}
int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
__u64 start, __u64 len)
{
struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
__u64 logical = 0, phys = 0, size = 0;
__u32 flags = 0;
loff_t isize;
sector_t blkoff, end_blkoff;
sector_t delalloc_blkoff;
unsigned long delalloc_blklen;
unsigned int blkbits = inode->i_blkbits;
int ret, n;
ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
if (ret)
return ret;
mutex_lock(&inode->i_mutex);
isize = i_size_read(inode);
blkoff = start >> blkbits;
end_blkoff = (start + len - 1) >> blkbits;
delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff,
&delalloc_blkoff);
do {
__u64 blkphy;
unsigned int maxblocks;
if (delalloc_blklen && blkoff == delalloc_blkoff) {
if (size) {
/* End of the current extent */
ret = fiemap_fill_next_extent(
fieinfo, logical, phys, size, flags);
if (ret)
break;
}
if (blkoff > end_blkoff)
break;
flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC;
logical = blkoff << blkbits;
phys = 0;
size = delalloc_blklen << blkbits;
blkoff = delalloc_blkoff + delalloc_blklen;
delalloc_blklen = nilfs_find_uncommitted_extent(
inode, blkoff, &delalloc_blkoff);
continue;
}
/*
* Limit the number of blocks that we look up so as
* not to get into the next delayed allocation extent.
*/
maxblocks = INT_MAX;
if (delalloc_blklen)
maxblocks = min_t(sector_t, delalloc_blkoff - blkoff,
maxblocks);
blkphy = 0;
down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
n = nilfs_bmap_lookup_contig(
NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks);
up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
if (n < 0) {
int past_eof;
if (unlikely(n != -ENOENT))
break; /* error */
/* HOLE */
blkoff++;
past_eof = ((blkoff << blkbits) >= isize);
if (size) {
/* End of the current extent */
if (past_eof)
flags |= FIEMAP_EXTENT_LAST;
ret = fiemap_fill_next_extent(
fieinfo, logical, phys, size, flags);
if (ret)
break;
size = 0;
}
if (blkoff > end_blkoff || past_eof)
break;
} else {
if (size) {
if (phys && blkphy << blkbits == phys + size) {
/* The current extent goes on */
size += n << blkbits;
} else {
/* Terminate the current extent */
ret = fiemap_fill_next_extent(
fieinfo, logical, phys, size,
flags);
if (ret || blkoff > end_blkoff)
break;
/* Start another extent */
flags = FIEMAP_EXTENT_MERGED;
logical = blkoff << blkbits;
phys = blkphy << blkbits;
size = n << blkbits;
}
} else {
/* Start a new extent */
flags = FIEMAP_EXTENT_MERGED;
logical = blkoff << blkbits;
phys = blkphy << blkbits;
size = n << blkbits;
}
blkoff += n;
}
cond_resched();
} while (true);
/* If ret is 1 then we just hit the end of the extent array */
if (ret == 1)
ret = 0;
mutex_unlock(&inode->i_mutex);
return ret;
}