kernel-aes67/sound/usb/usbmidi.c
Pete Zaitcev 38e2bfc94e USB: Dealias -110 code (more complete)
The purpose of this patch is to split off the case when a device does
not reply on the lower level (which is reported by HC hardware), and
a case when the device accepted the request, but does not reply at
upper level. This redefinition allows to diagnose issues easier,
without asking the user if the -110 happened "immediately".

The usbmon splits such cases already thanks to its timestamp, but
it's not always available.

I adjusted all drivers which I found affected (by searching for "urb").
Out of tree drivers may suffer a little bit, but I do not expect much
breakage. At worst they may print a few messages.

Signed-off-by: Pete Zaitcev <zaitcev@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-09-27 11:59:00 -07:00

1686 lines
47 KiB
C

/*
* usbmidi.c - ALSA USB MIDI driver
*
* Copyright (c) 2002-2005 Clemens Ladisch
* All rights reserved.
*
* Based on the OSS usb-midi driver by NAGANO Daisuke,
* NetBSD's umidi driver by Takuya SHIOZAKI,
* the "USB Device Class Definition for MIDI Devices" by Roland
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed and/or modified under the
* terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sound/driver.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/usb.h>
#include <sound/core.h>
#include <sound/rawmidi.h>
#include <sound/asequencer.h>
#include "usbaudio.h"
/*
* define this to log all USB packets
*/
/* #define DUMP_PACKETS */
/*
* how long to wait after some USB errors, so that khubd can disconnect() us
* without too many spurious errors
*/
#define ERROR_DELAY_JIFFIES (HZ / 10)
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("USB Audio/MIDI helper module");
MODULE_LICENSE("Dual BSD/GPL");
struct usb_ms_header_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bcdMSC[2];
__le16 wTotalLength;
} __attribute__ ((packed));
struct usb_ms_endpoint_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bNumEmbMIDIJack;
__u8 baAssocJackID[0];
} __attribute__ ((packed));
struct snd_usb_midi_in_endpoint;
struct snd_usb_midi_out_endpoint;
struct snd_usb_midi_endpoint;
struct usb_protocol_ops {
void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
void (*output)(struct snd_usb_midi_out_endpoint*);
void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
};
struct snd_usb_midi {
struct snd_usb_audio *chip;
struct usb_interface *iface;
const struct snd_usb_audio_quirk *quirk;
struct snd_rawmidi *rmidi;
struct usb_protocol_ops* usb_protocol_ops;
struct list_head list;
struct timer_list error_timer;
struct snd_usb_midi_endpoint {
struct snd_usb_midi_out_endpoint *out;
struct snd_usb_midi_in_endpoint *in;
} endpoints[MIDI_MAX_ENDPOINTS];
unsigned long input_triggered;
};
struct snd_usb_midi_out_endpoint {
struct snd_usb_midi* umidi;
struct urb* urb;
int urb_active;
int max_transfer; /* size of urb buffer */
struct tasklet_struct tasklet;
spinlock_t buffer_lock;
struct usbmidi_out_port {
struct snd_usb_midi_out_endpoint* ep;
struct snd_rawmidi_substream *substream;
int active;
uint8_t cable; /* cable number << 4 */
uint8_t state;
#define STATE_UNKNOWN 0
#define STATE_1PARAM 1
#define STATE_2PARAM_1 2
#define STATE_2PARAM_2 3
#define STATE_SYSEX_0 4
#define STATE_SYSEX_1 5
#define STATE_SYSEX_2 6
uint8_t data[2];
} ports[0x10];
int current_port;
};
struct snd_usb_midi_in_endpoint {
struct snd_usb_midi* umidi;
struct urb* urb;
struct usbmidi_in_port {
struct snd_rawmidi_substream *substream;
} ports[0x10];
u8 seen_f5;
u8 error_resubmit;
int current_port;
};
static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
static const uint8_t snd_usbmidi_cin_length[] = {
0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
};
/*
* Submits the URB, with error handling.
*/
static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
{
int err = usb_submit_urb(urb, flags);
if (err < 0 && err != -ENODEV)
snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
return err;
}
/*
* Error handling for URB completion functions.
*/
static int snd_usbmidi_urb_error(int status)
{
switch (status) {
/* manually unlinked, or device gone */
case -ENOENT:
case -ECONNRESET:
case -ESHUTDOWN:
case -ENODEV:
return -ENODEV;
/* errors that might occur during unplugging */
case -EPROTO:
case -ETIME:
case -EILSEQ:
return -EIO;
default:
snd_printk(KERN_ERR "urb status %d\n", status);
return 0; /* continue */
}
}
/*
* Receives a chunk of MIDI data.
*/
static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
uint8_t* data, int length)
{
struct usbmidi_in_port* port = &ep->ports[portidx];
if (!port->substream) {
snd_printd("unexpected port %d!\n", portidx);
return;
}
if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
return;
snd_rawmidi_receive(port->substream, data, length);
}
#ifdef DUMP_PACKETS
static void dump_urb(const char *type, const u8 *data, int length)
{
snd_printk(KERN_DEBUG "%s packet: [", type);
for (; length > 0; ++data, --length)
printk(" %02x", *data);
printk(" ]\n");
}
#else
#define dump_urb(type, data, length) /* nothing */
#endif
/*
* Processes the data read from the device.
*/
static void snd_usbmidi_in_urb_complete(struct urb* urb, struct pt_regs *regs)
{
struct snd_usb_midi_in_endpoint* ep = urb->context;
if (urb->status == 0) {
dump_urb("received", urb->transfer_buffer, urb->actual_length);
ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
urb->actual_length);
} else {
int err = snd_usbmidi_urb_error(urb->status);
if (err < 0) {
if (err != -ENODEV) {
ep->error_resubmit = 1;
mod_timer(&ep->umidi->error_timer,
jiffies + ERROR_DELAY_JIFFIES);
}
return;
}
}
urb->dev = ep->umidi->chip->dev;
snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
}
static void snd_usbmidi_out_urb_complete(struct urb* urb, struct pt_regs *regs)
{
struct snd_usb_midi_out_endpoint* ep = urb->context;
spin_lock(&ep->buffer_lock);
ep->urb_active = 0;
spin_unlock(&ep->buffer_lock);
if (urb->status < 0) {
int err = snd_usbmidi_urb_error(urb->status);
if (err < 0) {
if (err != -ENODEV)
mod_timer(&ep->umidi->error_timer,
jiffies + ERROR_DELAY_JIFFIES);
return;
}
}
snd_usbmidi_do_output(ep);
}
/*
* This is called when some data should be transferred to the device
* (from one or more substreams).
*/
static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
{
struct urb* urb = ep->urb;
unsigned long flags;
spin_lock_irqsave(&ep->buffer_lock, flags);
if (ep->urb_active || ep->umidi->chip->shutdown) {
spin_unlock_irqrestore(&ep->buffer_lock, flags);
return;
}
urb->transfer_buffer_length = 0;
ep->umidi->usb_protocol_ops->output(ep);
if (urb->transfer_buffer_length > 0) {
dump_urb("sending", urb->transfer_buffer,
urb->transfer_buffer_length);
urb->dev = ep->umidi->chip->dev;
ep->urb_active = snd_usbmidi_submit_urb(urb, GFP_ATOMIC) >= 0;
}
spin_unlock_irqrestore(&ep->buffer_lock, flags);
}
static void snd_usbmidi_out_tasklet(unsigned long data)
{
struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
snd_usbmidi_do_output(ep);
}
/* called after transfers had been interrupted due to some USB error */
static void snd_usbmidi_error_timer(unsigned long data)
{
struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
int i;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
if (in && in->error_resubmit) {
in->error_resubmit = 0;
in->urb->dev = umidi->chip->dev;
snd_usbmidi_submit_urb(in->urb, GFP_ATOMIC);
}
if (umidi->endpoints[i].out)
snd_usbmidi_do_output(umidi->endpoints[i].out);
}
}
/* helper function to send static data that may not DMA-able */
static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
const void *data, int len)
{
int err;
void *buf = kmalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
memcpy(buf, data, len);
dump_urb("sending", buf, len);
err = usb_bulk_msg(ep->umidi->chip->dev, ep->urb->pipe, buf, len,
NULL, 250);
kfree(buf);
return err;
}
/*
* Standard USB MIDI protocol: see the spec.
* Midiman protocol: like the standard protocol, but the control byte is the
* fourth byte in each packet, and uses length instead of CIN.
*/
static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
int i;
for (i = 0; i + 3 < buffer_length; i += 4)
if (buffer[i] != 0) {
int cable = buffer[i] >> 4;
int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
}
}
static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
int i;
for (i = 0; i + 3 < buffer_length; i += 4)
if (buffer[i + 3] != 0) {
int port = buffer[i + 3] >> 4;
int length = buffer[i + 3] & 3;
snd_usbmidi_input_data(ep, port, &buffer[i], length);
}
}
/*
* Adds one USB MIDI packet to the output buffer.
*/
static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
uint8_t p1, uint8_t p2, uint8_t p3)
{
uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
buf[0] = p0;
buf[1] = p1;
buf[2] = p2;
buf[3] = p3;
urb->transfer_buffer_length += 4;
}
/*
* Adds one Midiman packet to the output buffer.
*/
static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
uint8_t p1, uint8_t p2, uint8_t p3)
{
uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
buf[0] = p1;
buf[1] = p2;
buf[2] = p3;
buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
urb->transfer_buffer_length += 4;
}
/*
* Converts MIDI commands to USB MIDI packets.
*/
static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
uint8_t b, struct urb* urb)
{
uint8_t p0 = port->cable;
void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
port->ep->umidi->usb_protocol_ops->output_packet;
if (b >= 0xf8) {
output_packet(urb, p0 | 0x0f, b, 0, 0);
} else if (b >= 0xf0) {
switch (b) {
case 0xf0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case 0xf1:
case 0xf3:
port->data[0] = b;
port->state = STATE_1PARAM;
break;
case 0xf2:
port->data[0] = b;
port->state = STATE_2PARAM_1;
break;
case 0xf4:
case 0xf5:
port->state = STATE_UNKNOWN;
break;
case 0xf6:
output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
port->state = STATE_UNKNOWN;
break;
case 0xf7:
switch (port->state) {
case STATE_SYSEX_0:
output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
break;
case STATE_SYSEX_1:
output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
break;
case STATE_SYSEX_2:
output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
break;
}
port->state = STATE_UNKNOWN;
break;
}
} else if (b >= 0x80) {
port->data[0] = b;
if (b >= 0xc0 && b <= 0xdf)
port->state = STATE_1PARAM;
else
port->state = STATE_2PARAM_1;
} else { /* b < 0x80 */
switch (port->state) {
case STATE_1PARAM:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
} else {
p0 |= 0x02;
port->state = STATE_UNKNOWN;
}
output_packet(urb, p0, port->data[0], b, 0);
break;
case STATE_2PARAM_1:
port->data[1] = b;
port->state = STATE_2PARAM_2;
break;
case STATE_2PARAM_2:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
port->state = STATE_2PARAM_1;
} else {
p0 |= 0x03;
port->state = STATE_UNKNOWN;
}
output_packet(urb, p0, port->data[0], port->data[1], b);
break;
case STATE_SYSEX_0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case STATE_SYSEX_1:
port->data[1] = b;
port->state = STATE_SYSEX_2;
break;
case STATE_SYSEX_2:
output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
port->state = STATE_SYSEX_0;
break;
}
}
}
static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep)
{
struct urb* urb = ep->urb;
int p;
/* FIXME: lower-numbered ports can starve higher-numbered ports */
for (p = 0; p < 0x10; ++p) {
struct usbmidi_out_port* port = &ep->ports[p];
if (!port->active)
continue;
while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
uint8_t b;
if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
port->active = 0;
break;
}
snd_usbmidi_transmit_byte(port, b, urb);
}
}
}
static struct usb_protocol_ops snd_usbmidi_standard_ops = {
.input = snd_usbmidi_standard_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_standard_packet,
};
static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
.input = snd_usbmidi_midiman_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_midiman_packet,
};
/*
* Novation USB MIDI protocol: number of data bytes is in the first byte
* (when receiving) (+1!) or in the second byte (when sending); data begins
* at the third byte.
*/
static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
return;
snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
}
static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep)
{
uint8_t* transfer_buffer;
int count;
if (!ep->ports[0].active)
return;
transfer_buffer = ep->urb->transfer_buffer;
count = snd_rawmidi_transmit(ep->ports[0].substream,
&transfer_buffer[2],
ep->max_transfer - 2);
if (count < 1) {
ep->ports[0].active = 0;
return;
}
transfer_buffer[0] = 0;
transfer_buffer[1] = count;
ep->urb->transfer_buffer_length = 2 + count;
}
static struct usb_protocol_ops snd_usbmidi_novation_ops = {
.input = snd_usbmidi_novation_input,
.output = snd_usbmidi_novation_output,
};
/*
* "raw" protocol: used by the MOTU FastLane.
*/
static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
}
static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep)
{
int count;
if (!ep->ports[0].active)
return;
count = snd_rawmidi_transmit(ep->ports[0].substream,
ep->urb->transfer_buffer,
ep->max_transfer);
if (count < 1) {
ep->ports[0].active = 0;
return;
}
ep->urb->transfer_buffer_length = count;
}
static struct usb_protocol_ops snd_usbmidi_raw_ops = {
.input = snd_usbmidi_raw_input,
.output = snd_usbmidi_raw_output,
};
/*
* Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
*/
static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
{
static const u8 init_data[] = {
/* initialization magic: "get version" */
0xf0,
0x00, 0x20, 0x31, /* Emagic */
0x64, /* Unitor8 */
0x0b, /* version number request */
0x00, /* command version */
0x00, /* EEPROM, box 0 */
0xf7
};
send_bulk_static_data(ep, init_data, sizeof(init_data));
/* while we're at it, pour on more magic */
send_bulk_static_data(ep, init_data, sizeof(init_data));
}
static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
{
static const u8 finish_data[] = {
/* switch to patch mode with last preset */
0xf0,
0x00, 0x20, 0x31, /* Emagic */
0x64, /* Unitor8 */
0x10, /* patch switch command */
0x00, /* command version */
0x7f, /* to all boxes */
0x40, /* last preset in EEPROM */
0xf7
};
send_bulk_static_data(ep, finish_data, sizeof(finish_data));
}
static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
int i;
/* FF indicates end of valid data */
for (i = 0; i < buffer_length; ++i)
if (buffer[i] == 0xff) {
buffer_length = i;
break;
}
/* handle F5 at end of last buffer */
if (ep->seen_f5)
goto switch_port;
while (buffer_length > 0) {
/* determine size of data until next F5 */
for (i = 0; i < buffer_length; ++i)
if (buffer[i] == 0xf5)
break;
snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
buffer += i;
buffer_length -= i;
if (buffer_length <= 0)
break;
/* assert(buffer[0] == 0xf5); */
ep->seen_f5 = 1;
++buffer;
--buffer_length;
switch_port:
if (buffer_length <= 0)
break;
if (buffer[0] < 0x80) {
ep->current_port = (buffer[0] - 1) & 15;
++buffer;
--buffer_length;
}
ep->seen_f5 = 0;
}
}
static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep)
{
int port0 = ep->current_port;
uint8_t* buf = ep->urb->transfer_buffer;
int buf_free = ep->max_transfer;
int length, i;
for (i = 0; i < 0x10; ++i) {
/* round-robin, starting at the last current port */
int portnum = (port0 + i) & 15;
struct usbmidi_out_port* port = &ep->ports[portnum];
if (!port->active)
continue;
if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
port->active = 0;
continue;
}
if (portnum != ep->current_port) {
if (buf_free < 2)
break;
ep->current_port = portnum;
buf[0] = 0xf5;
buf[1] = (portnum + 1) & 15;
buf += 2;
buf_free -= 2;
}
if (buf_free < 1)
break;
length = snd_rawmidi_transmit(port->substream, buf, buf_free);
if (length > 0) {
buf += length;
buf_free -= length;
if (buf_free < 1)
break;
}
}
if (buf_free < ep->max_transfer && buf_free > 0) {
*buf = 0xff;
--buf_free;
}
ep->urb->transfer_buffer_length = ep->max_transfer - buf_free;
}
static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
.input = snd_usbmidi_emagic_input,
.output = snd_usbmidi_emagic_output,
.init_out_endpoint = snd_usbmidi_emagic_init_out,
.finish_out_endpoint = snd_usbmidi_emagic_finish_out,
};
static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
{
struct snd_usb_midi* umidi = substream->rmidi->private_data;
struct usbmidi_out_port* port = NULL;
int i, j;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
if (umidi->endpoints[i].out)
for (j = 0; j < 0x10; ++j)
if (umidi->endpoints[i].out->ports[j].substream == substream) {
port = &umidi->endpoints[i].out->ports[j];
break;
}
if (!port) {
snd_BUG();
return -ENXIO;
}
substream->runtime->private_data = port;
port->state = STATE_UNKNOWN;
return 0;
}
static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
{
return 0;
}
static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
{
struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
port->active = up;
if (up) {
if (port->ep->umidi->chip->shutdown) {
/* gobble up remaining bytes to prevent wait in
* snd_rawmidi_drain_output */
while (!snd_rawmidi_transmit_empty(substream))
snd_rawmidi_transmit_ack(substream, 1);
return;
}
tasklet_hi_schedule(&port->ep->tasklet);
}
}
static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
{
return 0;
}
static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
{
return 0;
}
static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
{
struct snd_usb_midi* umidi = substream->rmidi->private_data;
if (up)
set_bit(substream->number, &umidi->input_triggered);
else
clear_bit(substream->number, &umidi->input_triggered);
}
static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
.open = snd_usbmidi_output_open,
.close = snd_usbmidi_output_close,
.trigger = snd_usbmidi_output_trigger,
};
static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
.open = snd_usbmidi_input_open,
.close = snd_usbmidi_input_close,
.trigger = snd_usbmidi_input_trigger
};
/*
* Frees an input endpoint.
* May be called when ep hasn't been initialized completely.
*/
static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
{
if (ep->urb) {
usb_buffer_free(ep->umidi->chip->dev,
ep->urb->transfer_buffer_length,
ep->urb->transfer_buffer,
ep->urb->transfer_dma);
usb_free_urb(ep->urb);
}
kfree(ep);
}
/*
* Creates an input endpoint.
*/
static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* ep_info,
struct snd_usb_midi_endpoint* rep)
{
struct snd_usb_midi_in_endpoint* ep;
void* buffer;
unsigned int pipe;
int length;
rep->in = NULL;
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->umidi = umidi;
ep->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!ep->urb) {
snd_usbmidi_in_endpoint_delete(ep);
return -ENOMEM;
}
if (ep_info->in_interval)
pipe = usb_rcvintpipe(umidi->chip->dev, ep_info->in_ep);
else
pipe = usb_rcvbulkpipe(umidi->chip->dev, ep_info->in_ep);
length = usb_maxpacket(umidi->chip->dev, pipe, 0);
buffer = usb_buffer_alloc(umidi->chip->dev, length, GFP_KERNEL,
&ep->urb->transfer_dma);
if (!buffer) {
snd_usbmidi_in_endpoint_delete(ep);
return -ENOMEM;
}
if (ep_info->in_interval)
usb_fill_int_urb(ep->urb, umidi->chip->dev, pipe, buffer,
length, snd_usbmidi_in_urb_complete, ep,
ep_info->in_interval);
else
usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer,
length, snd_usbmidi_in_urb_complete, ep);
ep->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
rep->in = ep;
return 0;
}
static unsigned int snd_usbmidi_count_bits(unsigned int x)
{
unsigned int bits;
for (bits = 0; x; ++bits)
x &= x - 1;
return bits;
}
/*
* Frees an output endpoint.
* May be called when ep hasn't been initialized completely.
*/
static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint* ep)
{
if (ep->urb) {
usb_buffer_free(ep->umidi->chip->dev, ep->max_transfer,
ep->urb->transfer_buffer,
ep->urb->transfer_dma);
usb_free_urb(ep->urb);
}
kfree(ep);
}
/*
* Creates an output endpoint, and initializes output ports.
*/
static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* ep_info,
struct snd_usb_midi_endpoint* rep)
{
struct snd_usb_midi_out_endpoint* ep;
int i;
unsigned int pipe;
void* buffer;
rep->out = NULL;
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->umidi = umidi;
ep->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!ep->urb) {
snd_usbmidi_out_endpoint_delete(ep);
return -ENOMEM;
}
/* we never use interrupt output pipes */
pipe = usb_sndbulkpipe(umidi->chip->dev, ep_info->out_ep);
ep->max_transfer = usb_maxpacket(umidi->chip->dev, pipe, 1);
buffer = usb_buffer_alloc(umidi->chip->dev, ep->max_transfer,
GFP_KERNEL, &ep->urb->transfer_dma);
if (!buffer) {
snd_usbmidi_out_endpoint_delete(ep);
return -ENOMEM;
}
usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer,
ep->max_transfer, snd_usbmidi_out_urb_complete, ep);
ep->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
spin_lock_init(&ep->buffer_lock);
tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
for (i = 0; i < 0x10; ++i)
if (ep_info->out_cables & (1 << i)) {
ep->ports[i].ep = ep;
ep->ports[i].cable = i << 4;
}
if (umidi->usb_protocol_ops->init_out_endpoint)
umidi->usb_protocol_ops->init_out_endpoint(ep);
rep->out = ep;
return 0;
}
/*
* Frees everything.
*/
static void snd_usbmidi_free(struct snd_usb_midi* umidi)
{
int i;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
if (ep->out)
snd_usbmidi_out_endpoint_delete(ep->out);
if (ep->in)
snd_usbmidi_in_endpoint_delete(ep->in);
}
kfree(umidi);
}
/*
* Unlinks all URBs (must be done before the usb_device is deleted).
*/
void snd_usbmidi_disconnect(struct list_head* p)
{
struct snd_usb_midi* umidi;
int i;
umidi = list_entry(p, struct snd_usb_midi, list);
del_timer_sync(&umidi->error_timer);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
if (ep->out)
tasklet_kill(&ep->out->tasklet);
if (ep->out && ep->out->urb) {
usb_kill_urb(ep->out->urb);
if (umidi->usb_protocol_ops->finish_out_endpoint)
umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
}
if (ep->in && ep->in->urb)
usb_kill_urb(ep->in->urb);
}
}
static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
{
struct snd_usb_midi* umidi = rmidi->private_data;
snd_usbmidi_free(umidi);
}
static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
int stream, int number)
{
struct list_head* list;
list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
if (substream->number == number)
return substream;
}
return NULL;
}
/*
* This list specifies names for ports that do not fit into the standard
* "(product) MIDI (n)" schema because they aren't external MIDI ports,
* such as internal control or synthesizer ports.
*/
static struct port_info {
u32 id;
short int port;
short int voices;
const char *name;
unsigned int seq_flags;
} snd_usbmidi_port_info[] = {
#define PORT_INFO(vendor, product, num, name_, voices_, flags) \
{ .id = USB_ID(vendor, product), \
.port = num, .voices = voices_, \
.name = name_, .seq_flags = flags }
#define EXTERNAL_PORT(vendor, product, num, name) \
PORT_INFO(vendor, product, num, name, 0, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
SNDRV_SEQ_PORT_TYPE_PORT)
#define CONTROL_PORT(vendor, product, num, name) \
PORT_INFO(vendor, product, num, name, 0, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_HARDWARE)
#define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
PORT_INFO(vendor, product, num, name, voices, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
#define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
PORT_INFO(vendor, product, num, name, voices, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
/* Roland UA-100 */
CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
/* Roland SC-8850 */
SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
/* Roland U-8 */
EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
/* Roland SC-8820 */
SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
/* Roland SK-500 */
SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
/* Roland SC-D70 */
SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
/* Edirol UM-880 */
CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
/* Edirol SD-90 */
ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
/* Edirol UM-550 */
CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
/* Edirol SD-20 */
ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
/* Edirol SD-80 */
ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
/* Edirol UA-700 */
EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
/* Roland VariOS */
EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
/* Edirol PCR */
EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
/* BOSS GS-10 */
EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
/* Edirol UA-1000 */
EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
/* Edirol UR-80 */
EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
/* Edirol PCR-A */
EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
/* Edirol UM-3EX */
CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
/* M-Audio MidiSport 8x8 */
CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
/* MOTU Fastlane */
EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
/* Emagic Unitor8/AMT8/MT4 */
EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
};
static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
{
int i;
for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
if (snd_usbmidi_port_info[i].id == umidi->chip->usb_id &&
snd_usbmidi_port_info[i].port == number)
return &snd_usbmidi_port_info[i];
}
return NULL;
}
static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
struct snd_seq_port_info *seq_port_info)
{
struct snd_usb_midi *umidi = rmidi->private_data;
struct port_info *port_info;
/* TODO: read port flags from descriptors */
port_info = find_port_info(umidi, number);
if (port_info) {
seq_port_info->type = port_info->seq_flags;
seq_port_info->midi_voices = port_info->voices;
}
}
static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
int stream, int number,
struct snd_rawmidi_substream ** rsubstream)
{
struct port_info *port_info;
const char *name_format;
struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
if (!substream) {
snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
return;
}
/* TODO: read port name from jack descriptor */
port_info = find_port_info(umidi, number);
name_format = port_info ? port_info->name : "%s MIDI %d";
snprintf(substream->name, sizeof(substream->name),
name_format, umidi->chip->card->shortname, number + 1);
*rsubstream = substream;
}
/*
* Creates the endpoints and their ports.
*/
static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoints)
{
int i, j, err;
int out_ports = 0, in_ports = 0;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
if (endpoints[i].out_cables) {
err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
&umidi->endpoints[i]);
if (err < 0)
return err;
}
if (endpoints[i].in_cables) {
err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
&umidi->endpoints[i]);
if (err < 0)
return err;
}
for (j = 0; j < 0x10; ++j) {
if (endpoints[i].out_cables & (1 << j)) {
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
&umidi->endpoints[i].out->ports[j].substream);
++out_ports;
}
if (endpoints[i].in_cables & (1 << j)) {
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
&umidi->endpoints[i].in->ports[j].substream);
++in_ports;
}
}
}
snd_printdd(KERN_INFO "created %d output and %d input ports\n",
out_ports, in_ports);
return 0;
}
/*
* Returns MIDIStreaming device capabilities.
*/
static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoints)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
struct usb_ms_header_descriptor* ms_header;
struct usb_host_endpoint *hostep;
struct usb_endpoint_descriptor* ep;
struct usb_ms_endpoint_descriptor* ms_ep;
int i, epidx;
intf = umidi->iface;
if (!intf)
return -ENXIO;
hostif = &intf->altsetting[0];
intfd = get_iface_desc(hostif);
ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
if (hostif->extralen >= 7 &&
ms_header->bLength >= 7 &&
ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
ms_header->bDescriptorSubtype == HEADER)
snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
else
snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
epidx = 0;
for (i = 0; i < intfd->bNumEndpoints; ++i) {
hostep = &hostif->endpoint[i];
ep = get_ep_desc(hostep);
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK &&
(ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
continue;
ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
if (hostep->extralen < 4 ||
ms_ep->bLength < 4 ||
ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
ms_ep->bDescriptorSubtype != MS_GENERAL)
continue;
if ((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
if (endpoints[epidx].out_ep) {
if (++epidx >= MIDI_MAX_ENDPOINTS) {
snd_printk(KERN_WARNING "too many endpoints\n");
break;
}
}
endpoints[epidx].out_ep = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoints[epidx].out_interval = ep->bInterval;
endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
} else {
if (endpoints[epidx].in_ep) {
if (++epidx >= MIDI_MAX_ENDPOINTS) {
snd_printk(KERN_WARNING "too many endpoints\n");
break;
}
}
endpoints[epidx].in_ep = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoints[epidx].in_interval = ep->bInterval;
endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
}
}
return 0;
}
/*
* On Roland devices, use the second alternate setting to be able to use
* the interrupt input endpoint.
*/
static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
intf = umidi->iface;
if (!intf || intf->num_altsetting != 2)
return;
hostif = &intf->altsetting[1];
intfd = get_iface_desc(hostif);
if (intfd->bNumEndpoints != 2 ||
(get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
(get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
return;
snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
intfd->bAlternateSetting);
usb_set_interface(umidi->chip->dev, intfd->bInterfaceNumber,
intfd->bAlternateSetting);
}
/*
* Try to find any usable endpoints in the interface.
*/
static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoint,
int max_endpoints)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
struct usb_endpoint_descriptor* epd;
int i, out_eps = 0, in_eps = 0;
if (USB_ID_VENDOR(umidi->chip->usb_id) == 0x0582)
snd_usbmidi_switch_roland_altsetting(umidi);
if (endpoint[0].out_ep || endpoint[0].in_ep)
return 0;
intf = umidi->iface;
if (!intf || intf->num_altsetting < 1)
return -ENOENT;
hostif = intf->cur_altsetting;
intfd = get_iface_desc(hostif);
for (i = 0; i < intfd->bNumEndpoints; ++i) {
epd = get_endpoint(hostif, i);
if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK &&
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
continue;
if (out_eps < max_endpoints &&
(epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
endpoint[out_eps].out_ep = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoint[out_eps].out_interval = epd->bInterval;
++out_eps;
}
if (in_eps < max_endpoints &&
(epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
endpoint[in_eps].in_ep = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoint[in_eps].in_interval = epd->bInterval;
++in_eps;
}
}
return (out_eps || in_eps) ? 0 : -ENOENT;
}
/*
* Detects the endpoints for one-port-per-endpoint protocols.
*/
static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoints)
{
int err, i;
err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
if (endpoints[i].out_ep)
endpoints[i].out_cables = 0x0001;
if (endpoints[i].in_ep)
endpoints[i].in_cables = 0x0001;
}
return err;
}
/*
* Detects the endpoints and ports of Yamaha devices.
*/
static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoint)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
uint8_t* cs_desc;
intf = umidi->iface;
if (!intf)
return -ENOENT;
hostif = intf->altsetting;
intfd = get_iface_desc(hostif);
if (intfd->bNumEndpoints < 1)
return -ENOENT;
/*
* For each port there is one MIDI_IN/OUT_JACK descriptor, not
* necessarily with any useful contents. So simply count 'em.
*/
for (cs_desc = hostif->extra;
cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
cs_desc += cs_desc[0]) {
if (cs_desc[1] == USB_DT_CS_INTERFACE) {
if (cs_desc[2] == MIDI_IN_JACK)
endpoint->in_cables = (endpoint->in_cables << 1) | 1;
else if (cs_desc[2] == MIDI_OUT_JACK)
endpoint->out_cables = (endpoint->out_cables << 1) | 1;
}
}
if (!endpoint->in_cables && !endpoint->out_cables)
return -ENOENT;
return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
}
/*
* Creates the endpoints and their ports for Midiman devices.
*/
static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoint)
{
struct snd_usb_midi_endpoint_info ep_info;
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
struct usb_endpoint_descriptor* epd;
int cable, err;
intf = umidi->iface;
if (!intf)
return -ENOENT;
hostif = intf->altsetting;
intfd = get_iface_desc(hostif);
/*
* The various MidiSport devices have more or less random endpoint
* numbers, so we have to identify the endpoints by their index in
* the descriptor array, like the driver for that other OS does.
*
* There is one interrupt input endpoint for all input ports, one
* bulk output endpoint for even-numbered ports, and one for odd-
* numbered ports. Both bulk output endpoints have corresponding
* input bulk endpoints (at indices 1 and 3) which aren't used.
*/
if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
snd_printdd(KERN_ERR "not enough endpoints\n");
return -ENOENT;
}
epd = get_endpoint(hostif, 0);
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_IN ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) {
snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
return -ENXIO;
}
epd = get_endpoint(hostif, 2);
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) {
snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
return -ENXIO;
}
if (endpoint->out_cables > 0x0001) {
epd = get_endpoint(hostif, 4);
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) {
snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
return -ENXIO;
}
}
ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.out_cables = endpoint->out_cables & 0x5555;
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
if (err < 0)
return err;
ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
ep_info.in_cables = endpoint->in_cables;
err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
if (err < 0)
return err;
if (endpoint->out_cables > 0x0001) {
ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.out_cables = endpoint->out_cables & 0xaaaa;
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
if (err < 0)
return err;
}
for (cable = 0; cable < 0x10; ++cable) {
if (endpoint->out_cables & (1 << cable))
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
&umidi->endpoints[cable & 1].out->ports[cable].substream);
if (endpoint->in_cables & (1 << cable))
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
&umidi->endpoints[0].in->ports[cable].substream);
}
return 0;
}
static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
.get_port_info = snd_usbmidi_get_port_info,
};
static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
int out_ports, int in_ports)
{
struct snd_rawmidi *rmidi;
int err;
err = snd_rawmidi_new(umidi->chip->card, "USB MIDI",
umidi->chip->next_midi_device++,
out_ports, in_ports, &rmidi);
if (err < 0)
return err;
strcpy(rmidi->name, umidi->chip->card->shortname);
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->ops = &snd_usbmidi_ops;
rmidi->private_data = umidi;
rmidi->private_free = snd_usbmidi_rawmidi_free;
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
umidi->rmidi = rmidi;
return 0;
}
/*
* Temporarily stop input.
*/
void snd_usbmidi_input_stop(struct list_head* p)
{
struct snd_usb_midi* umidi;
int i;
umidi = list_entry(p, struct snd_usb_midi, list);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
if (ep->in)
usb_kill_urb(ep->in->urb);
}
}
static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
{
if (ep) {
struct urb* urb = ep->urb;
urb->dev = ep->umidi->chip->dev;
snd_usbmidi_submit_urb(urb, GFP_KERNEL);
}
}
/*
* Resume input after a call to snd_usbmidi_input_stop().
*/
void snd_usbmidi_input_start(struct list_head* p)
{
struct snd_usb_midi* umidi;
int i;
umidi = list_entry(p, struct snd_usb_midi, list);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
}
/*
* Creates and registers everything needed for a MIDI streaming interface.
*/
int snd_usb_create_midi_interface(struct snd_usb_audio* chip,
struct usb_interface* iface,
const struct snd_usb_audio_quirk* quirk)
{
struct snd_usb_midi* umidi;
struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
int out_ports, in_ports;
int i, err;
umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
if (!umidi)
return -ENOMEM;
umidi->chip = chip;
umidi->iface = iface;
umidi->quirk = quirk;
umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
init_timer(&umidi->error_timer);
umidi->error_timer.function = snd_usbmidi_error_timer;
umidi->error_timer.data = (unsigned long)umidi;
/* detect the endpoint(s) to use */
memset(endpoints, 0, sizeof(endpoints));
switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
case QUIRK_MIDI_STANDARD_INTERFACE:
err = snd_usbmidi_get_ms_info(umidi, endpoints);
break;
case QUIRK_MIDI_FIXED_ENDPOINT:
memcpy(&endpoints[0], quirk->data,
sizeof(struct snd_usb_midi_endpoint_info));
err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
break;
case QUIRK_MIDI_YAMAHA:
err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
break;
case QUIRK_MIDI_MIDIMAN:
umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
memcpy(&endpoints[0], quirk->data,
sizeof(struct snd_usb_midi_endpoint_info));
err = 0;
break;
case QUIRK_MIDI_NOVATION:
umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
case QUIRK_MIDI_RAW:
umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
case QUIRK_MIDI_EMAGIC:
umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
memcpy(&endpoints[0], quirk->data,
sizeof(struct snd_usb_midi_endpoint_info));
err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
break;
case QUIRK_MIDI_CME:
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
default:
snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
err = -ENXIO;
break;
}
if (err < 0) {
kfree(umidi);
return err;
}
/* create rawmidi device */
out_ports = 0;
in_ports = 0;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
out_ports += snd_usbmidi_count_bits(endpoints[i].out_cables);
in_ports += snd_usbmidi_count_bits(endpoints[i].in_cables);
}
err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
if (err < 0) {
kfree(umidi);
return err;
}
/* create endpoint/port structures */
if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
else
err = snd_usbmidi_create_endpoints(umidi, endpoints);
if (err < 0) {
snd_usbmidi_free(umidi);
return err;
}
list_add(&umidi->list, &umidi->chip->midi_list);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
return 0;
}
EXPORT_SYMBOL(snd_usb_create_midi_interface);
EXPORT_SYMBOL(snd_usbmidi_input_stop);
EXPORT_SYMBOL(snd_usbmidi_input_start);
EXPORT_SYMBOL(snd_usbmidi_disconnect);