kernel-aes67/arch/ia64/lib/swiotlb.c
Alex Williamson e8579e72ca [IA64, X86_64] fix swiotlb sizing
Fix swiotlb sizing to match what the comments and the kernel
parameters documentation indicate.  Given a default 16k page size kernel
(ia64) and a 2k swiotlb page size, we're off by a multiple of 8 trying
to size the swiotlb.  When specified on the boot line, the swiotlb is
made 8x bigger than requested.  When left to the default value, it's 8x
smaller than the comments indicate.  For x86_64 the multiplier would be
2x.  The patch below fixes this.  Now, what's a good default swiotlb
size?  Apparently we don't really need 64MB.

Signed-off-by: Alex Williamson <alex.williamson@hp.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-08-18 16:33:28 -07:00

658 lines
18 KiB
C

/*
* Dynamic DMA mapping support.
*
* This implementation is for IA-64 platforms that do not support
* I/O TLBs (aka DMA address translation hardware).
* Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
* Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
* Copyright (C) 2000, 2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
* 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
* unnecessary i-cache flushing.
* 04/07/.. ak Better overflow handling. Assorted fixes.
*/
#include <linux/cache.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ctype.h>
#include <asm/io.h>
#include <asm/pci.h>
#include <asm/dma.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#define OFFSET(val,align) ((unsigned long) \
( (val) & ( (align) - 1)))
#define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
#define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
/*
* Maximum allowable number of contiguous slabs to map,
* must be a power of 2. What is the appropriate value ?
* The complexity of {map,unmap}_single is linearly dependent on this value.
*/
#define IO_TLB_SEGSIZE 128
/*
* log of the size of each IO TLB slab. The number of slabs is command line
* controllable.
*/
#define IO_TLB_SHIFT 11
int swiotlb_force;
/*
* Used to do a quick range check in swiotlb_unmap_single and
* swiotlb_sync_single_*, to see if the memory was in fact allocated by this
* API.
*/
static char *io_tlb_start, *io_tlb_end;
/*
* The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
* io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
*/
static unsigned long io_tlb_nslabs;
/*
* When the IOMMU overflows we return a fallback buffer. This sets the size.
*/
static unsigned long io_tlb_overflow = 32*1024;
void *io_tlb_overflow_buffer;
/*
* This is a free list describing the number of free entries available from
* each index
*/
static unsigned int *io_tlb_list;
static unsigned int io_tlb_index;
/*
* We need to save away the original address corresponding to a mapped entry
* for the sync operations.
*/
static unsigned char **io_tlb_orig_addr;
/*
* Protect the above data structures in the map and unmap calls
*/
static DEFINE_SPINLOCK(io_tlb_lock);
static int __init
setup_io_tlb_npages(char *str)
{
if (isdigit(*str)) {
io_tlb_nslabs = simple_strtoul(str, &str, 0);
/* avoid tail segment of size < IO_TLB_SEGSIZE */
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
if (*str == ',')
++str;
if (!strcmp(str, "force"))
swiotlb_force = 1;
return 1;
}
__setup("swiotlb=", setup_io_tlb_npages);
/* make io_tlb_overflow tunable too? */
/*
* Statically reserve bounce buffer space and initialize bounce buffer data
* structures for the software IO TLB used to implement the PCI DMA API.
*/
void
swiotlb_init_with_default_size (size_t default_size)
{
unsigned long i;
if (!io_tlb_nslabs) {
io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
/*
* Get IO TLB memory from the low pages
*/
io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs *
(1 << IO_TLB_SHIFT));
if (!io_tlb_start)
panic("Cannot allocate SWIOTLB buffer");
io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
* between io_tlb_start and io_tlb_end.
*/
io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
for (i = 0; i < io_tlb_nslabs; i++)
io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
io_tlb_index = 0;
io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
/*
* Get the overflow emergency buffer
*/
io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
}
void
swiotlb_init (void)
{
swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
}
static inline int
address_needs_mapping(struct device *hwdev, dma_addr_t addr)
{
dma_addr_t mask = 0xffffffff;
/* If the device has a mask, use it, otherwise default to 32 bits */
if (hwdev && hwdev->dma_mask)
mask = *hwdev->dma_mask;
return (addr & ~mask) != 0;
}
/*
* Allocates bounce buffer and returns its kernel virtual address.
*/
static void *
map_single(struct device *hwdev, char *buffer, size_t size, int dir)
{
unsigned long flags;
char *dma_addr;
unsigned int nslots, stride, index, wrap;
int i;
/*
* For mappings greater than a page, we limit the stride (and
* hence alignment) to a page size.
*/
nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
if (size > PAGE_SIZE)
stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
else
stride = 1;
if (!nslots)
BUG();
/*
* Find suitable number of IO TLB entries size that will fit this
* request and allocate a buffer from that IO TLB pool.
*/
spin_lock_irqsave(&io_tlb_lock, flags);
{
wrap = index = ALIGN(io_tlb_index, stride);
if (index >= io_tlb_nslabs)
wrap = index = 0;
do {
/*
* If we find a slot that indicates we have 'nslots'
* number of contiguous buffers, we allocate the
* buffers from that slot and mark the entries as '0'
* indicating unavailable.
*/
if (io_tlb_list[index] >= nslots) {
int count = 0;
for (i = index; i < (int) (index + nslots); i++)
io_tlb_list[i] = 0;
for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
io_tlb_list[i] = ++count;
dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
/*
* Update the indices to avoid searching in
* the next round.
*/
io_tlb_index = ((index + nslots) < io_tlb_nslabs
? (index + nslots) : 0);
goto found;
}
index += stride;
if (index >= io_tlb_nslabs)
index = 0;
} while (index != wrap);
spin_unlock_irqrestore(&io_tlb_lock, flags);
return NULL;
}
found:
spin_unlock_irqrestore(&io_tlb_lock, flags);
/*
* Save away the mapping from the original address to the DMA address.
* This is needed when we sync the memory. Then we sync the buffer if
* needed.
*/
io_tlb_orig_addr[index] = buffer;
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
memcpy(dma_addr, buffer, size);
return dma_addr;
}
/*
* dma_addr is the kernel virtual address of the bounce buffer to unmap.
*/
static void
unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
{
unsigned long flags;
int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
char *buffer = io_tlb_orig_addr[index];
/*
* First, sync the memory before unmapping the entry
*/
if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
/*
* bounce... copy the data back into the original buffer * and
* delete the bounce buffer.
*/
memcpy(buffer, dma_addr, size);
/*
* Return the buffer to the free list by setting the corresponding
* entries to indicate the number of contigous entries available.
* While returning the entries to the free list, we merge the entries
* with slots below and above the pool being returned.
*/
spin_lock_irqsave(&io_tlb_lock, flags);
{
count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
io_tlb_list[index + nslots] : 0);
/*
* Step 1: return the slots to the free list, merging the
* slots with superceeding slots
*/
for (i = index + nslots - 1; i >= index; i--)
io_tlb_list[i] = ++count;
/*
* Step 2: merge the returned slots with the preceding slots,
* if available (non zero)
*/
for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
io_tlb_list[i] = ++count;
}
spin_unlock_irqrestore(&io_tlb_lock, flags);
}
static void
sync_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
{
int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
char *buffer = io_tlb_orig_addr[index];
/*
* bounce... copy the data back into/from the original buffer
* XXX How do you handle DMA_BIDIRECTIONAL here ?
*/
if (dir == DMA_FROM_DEVICE)
memcpy(buffer, dma_addr, size);
else if (dir == DMA_TO_DEVICE)
memcpy(dma_addr, buffer, size);
else
BUG();
}
void *
swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, int flags)
{
unsigned long dev_addr;
void *ret;
int order = get_order(size);
/*
* XXX fix me: the DMA API should pass us an explicit DMA mask
* instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
* bit range instead of a 16MB one).
*/
flags |= GFP_DMA;
ret = (void *)__get_free_pages(flags, order);
if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) {
/*
* The allocated memory isn't reachable by the device.
* Fall back on swiotlb_map_single().
*/
free_pages((unsigned long) ret, order);
ret = NULL;
}
if (!ret) {
/*
* We are either out of memory or the device can't DMA
* to GFP_DMA memory; fall back on
* swiotlb_map_single(), which will grab memory from
* the lowest available address range.
*/
dma_addr_t handle;
handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
if (dma_mapping_error(handle))
return NULL;
ret = phys_to_virt(handle);
}
memset(ret, 0, size);
dev_addr = virt_to_phys(ret);
/* Confirm address can be DMA'd by device */
if (address_needs_mapping(hwdev, dev_addr)) {
printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
(unsigned long long)*hwdev->dma_mask, dev_addr);
panic("swiotlb_alloc_coherent: allocated memory is out of "
"range for device");
}
*dma_handle = dev_addr;
return ret;
}
void
swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
dma_addr_t dma_handle)
{
if (!(vaddr >= (void *)io_tlb_start
&& vaddr < (void *)io_tlb_end))
free_pages((unsigned long) vaddr, get_order(size));
else
/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
}
static void
swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
{
/*
* Ran out of IOMMU space for this operation. This is very bad.
* Unfortunately the drivers cannot handle this operation properly.
* unless they check for pci_dma_mapping_error (most don't)
* When the mapping is small enough return a static buffer to limit
* the damage, or panic when the transfer is too big.
*/
printk(KERN_ERR "PCI-DMA: Out of SW-IOMMU space for %lu bytes at "
"device %s\n", size, dev ? dev->bus_id : "?");
if (size > io_tlb_overflow && do_panic) {
if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL)
panic("PCI-DMA: Memory would be corrupted\n");
if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL)
panic("PCI-DMA: Random memory would be DMAed\n");
}
}
/*
* Map a single buffer of the indicated size for DMA in streaming mode. The
* PCI address to use is returned.
*
* Once the device is given the dma address, the device owns this memory until
* either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
*/
dma_addr_t
swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
{
unsigned long dev_addr = virt_to_phys(ptr);
void *map;
if (dir == DMA_NONE)
BUG();
/*
* If the pointer passed in happens to be in the device's DMA window,
* we can safely return the device addr and not worry about bounce
* buffering it.
*/
if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
return dev_addr;
/*
* Oh well, have to allocate and map a bounce buffer.
*/
map = map_single(hwdev, ptr, size, dir);
if (!map) {
swiotlb_full(hwdev, size, dir, 1);
map = io_tlb_overflow_buffer;
}
dev_addr = virt_to_phys(map);
/*
* Ensure that the address returned is DMA'ble
*/
if (address_needs_mapping(hwdev, dev_addr))
panic("map_single: bounce buffer is not DMA'ble");
return dev_addr;
}
/*
* Since DMA is i-cache coherent, any (complete) pages that were written via
* DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
* flush them when they get mapped into an executable vm-area.
*/
static void
mark_clean(void *addr, size_t size)
{
unsigned long pg_addr, end;
pg_addr = PAGE_ALIGN((unsigned long) addr);
end = (unsigned long) addr + size;
while (pg_addr + PAGE_SIZE <= end) {
struct page *page = virt_to_page(pg_addr);
set_bit(PG_arch_1, &page->flags);
pg_addr += PAGE_SIZE;
}
}
/*
* Unmap a single streaming mode DMA translation. The dma_addr and size must
* match what was provided for in a previous swiotlb_map_single call. All
* other usages are undefined.
*
* After this call, reads by the cpu to the buffer are guaranteed to see
* whatever the device wrote there.
*/
void
swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
int dir)
{
char *dma_addr = phys_to_virt(dev_addr);
if (dir == DMA_NONE)
BUG();
if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
unmap_single(hwdev, dma_addr, size, dir);
else if (dir == DMA_FROM_DEVICE)
mark_clean(dma_addr, size);
}
/*
* Make physical memory consistent for a single streaming mode DMA translation
* after a transfer.
*
* If you perform a swiotlb_map_single() but wish to interrogate the buffer
* using the cpu, yet do not wish to teardown the PCI dma mapping, you must
* call this function before doing so. At the next point you give the PCI dma
* address back to the card, you must first perform a
* swiotlb_dma_sync_for_device, and then the device again owns the buffer
*/
void
swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
size_t size, int dir)
{
char *dma_addr = phys_to_virt(dev_addr);
if (dir == DMA_NONE)
BUG();
if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
sync_single(hwdev, dma_addr, size, dir);
else if (dir == DMA_FROM_DEVICE)
mark_clean(dma_addr, size);
}
void
swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
size_t size, int dir)
{
char *dma_addr = phys_to_virt(dev_addr);
if (dir == DMA_NONE)
BUG();
if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
sync_single(hwdev, dma_addr, size, dir);
else if (dir == DMA_FROM_DEVICE)
mark_clean(dma_addr, size);
}
/*
* Map a set of buffers described by scatterlist in streaming mode for DMA.
* This is the scatter-gather version of the above swiotlb_map_single
* interface. Here the scatter gather list elements are each tagged with the
* appropriate dma address and length. They are obtained via
* sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for swiotlb_map_single are the
* same here.
*/
int
swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
int dir)
{
void *addr;
unsigned long dev_addr;
int i;
if (dir == DMA_NONE)
BUG();
for (i = 0; i < nelems; i++, sg++) {
addr = SG_ENT_VIRT_ADDRESS(sg);
dev_addr = virt_to_phys(addr);
if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
sg->dma_address = (dma_addr_t) virt_to_phys(map_single(hwdev, addr, sg->length, dir));
if (!sg->dma_address) {
/* Don't panic here, we expect map_sg users
to do proper error handling. */
swiotlb_full(hwdev, sg->length, dir, 0);
swiotlb_unmap_sg(hwdev, sg - i, i, dir);
sg[0].dma_length = 0;
return 0;
}
} else
sg->dma_address = dev_addr;
sg->dma_length = sg->length;
}
return nelems;
}
/*
* Unmap a set of streaming mode DMA translations. Again, cpu read rules
* concerning calls here are the same as for swiotlb_unmap_single() above.
*/
void
swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
int dir)
{
int i;
if (dir == DMA_NONE)
BUG();
for (i = 0; i < nelems; i++, sg++)
if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir);
else if (dir == DMA_FROM_DEVICE)
mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
}
/*
* Make physical memory consistent for a set of streaming mode DMA translations
* after a transfer.
*
* The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
* and usage.
*/
void
swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
int nelems, int dir)
{
int i;
if (dir == DMA_NONE)
BUG();
for (i = 0; i < nelems; i++, sg++)
if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
sync_single(hwdev, (void *) sg->dma_address,
sg->dma_length, dir);
}
void
swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
int nelems, int dir)
{
int i;
if (dir == DMA_NONE)
BUG();
for (i = 0; i < nelems; i++, sg++)
if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
sync_single(hwdev, (void *) sg->dma_address,
sg->dma_length, dir);
}
int
swiotlb_dma_mapping_error(dma_addr_t dma_addr)
{
return (dma_addr == virt_to_phys(io_tlb_overflow_buffer));
}
/*
* Return whether the given PCI device DMA address mask can be supported
* properly. For example, if your device can only drive the low 24-bits
* during PCI bus mastering, then you would pass 0x00ffffff as the mask to
* this function.
*/
int
swiotlb_dma_supported (struct device *hwdev, u64 mask)
{
return (virt_to_phys (io_tlb_end) - 1) <= mask;
}
EXPORT_SYMBOL(swiotlb_init);
EXPORT_SYMBOL(swiotlb_map_single);
EXPORT_SYMBOL(swiotlb_unmap_single);
EXPORT_SYMBOL(swiotlb_map_sg);
EXPORT_SYMBOL(swiotlb_unmap_sg);
EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
EXPORT_SYMBOL(swiotlb_sync_single_for_device);
EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
EXPORT_SYMBOL(swiotlb_dma_mapping_error);
EXPORT_SYMBOL(swiotlb_alloc_coherent);
EXPORT_SYMBOL(swiotlb_free_coherent);
EXPORT_SYMBOL(swiotlb_dma_supported);