kernel-aes67/kernel/power/main.c
Rafael J. Wysocki 1bfcf1304e pm: rework disabling of user mode helpers during suspend/hibernation
We currently use a PM notifier to disable user mode helpers before suspend
and hibernation and to re-enable them during resume.  However, this is not
an ideal solution, because if any drivers want to upload firmware into
memory before suspend, they have to use a PM notifier for this purpose and
there is no guarantee that the ordering of PM notifiers will be as
expected (ie.  the notifier that disables user mode helpers has to be run
after the driver's notifier used for uploading the firmware).

For this reason, it seems better to move the disabling and enabling of
user mode helpers to separate functions that will be called by the PM core
as necessary.

[akpm@linux-foundation.org: remove unneeded ifdefs]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-16 11:21:29 -07:00

733 lines
16 KiB
C

/*
* kernel/power/main.c - PM subsystem core functionality.
*
* Copyright (c) 2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
*
* This file is released under the GPLv2
*
*/
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/kobject.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/cpu.h>
#include <linux/resume-trace.h>
#include <linux/freezer.h>
#include <linux/vmstat.h>
#include <linux/syscalls.h>
#include <linux/ftrace.h>
#include "power.h"
DEFINE_MUTEX(pm_mutex);
unsigned int pm_flags;
EXPORT_SYMBOL(pm_flags);
#ifdef CONFIG_PM_SLEEP
/* Routines for PM-transition notifications */
static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
int register_pm_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&pm_chain_head, nb);
}
EXPORT_SYMBOL_GPL(register_pm_notifier);
int unregister_pm_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&pm_chain_head, nb);
}
EXPORT_SYMBOL_GPL(unregister_pm_notifier);
int pm_notifier_call_chain(unsigned long val)
{
return (blocking_notifier_call_chain(&pm_chain_head, val, NULL)
== NOTIFY_BAD) ? -EINVAL : 0;
}
#ifdef CONFIG_PM_DEBUG
int pm_test_level = TEST_NONE;
static int suspend_test(int level)
{
if (pm_test_level == level) {
printk(KERN_INFO "suspend debug: Waiting for 5 seconds.\n");
mdelay(5000);
return 1;
}
return 0;
}
static const char * const pm_tests[__TEST_AFTER_LAST] = {
[TEST_NONE] = "none",
[TEST_CORE] = "core",
[TEST_CPUS] = "processors",
[TEST_PLATFORM] = "platform",
[TEST_DEVICES] = "devices",
[TEST_FREEZER] = "freezer",
};
static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
char *s = buf;
int level;
for (level = TEST_FIRST; level <= TEST_MAX; level++)
if (pm_tests[level]) {
if (level == pm_test_level)
s += sprintf(s, "[%s] ", pm_tests[level]);
else
s += sprintf(s, "%s ", pm_tests[level]);
}
if (s != buf)
/* convert the last space to a newline */
*(s-1) = '\n';
return (s - buf);
}
static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
const char * const *s;
int level;
char *p;
int len;
int error = -EINVAL;
p = memchr(buf, '\n', n);
len = p ? p - buf : n;
mutex_lock(&pm_mutex);
level = TEST_FIRST;
for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
pm_test_level = level;
error = 0;
break;
}
mutex_unlock(&pm_mutex);
return error ? error : n;
}
power_attr(pm_test);
#else /* !CONFIG_PM_DEBUG */
static inline int suspend_test(int level) { return 0; }
#endif /* !CONFIG_PM_DEBUG */
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_SUSPEND
#ifdef CONFIG_PM_TEST_SUSPEND
/*
* We test the system suspend code by setting an RTC wakealarm a short
* time in the future, then suspending. Suspending the devices won't
* normally take long ... some systems only need a few milliseconds.
*
* The time it takes is system-specific though, so when we test this
* during system bootup we allow a LOT of time.
*/
#define TEST_SUSPEND_SECONDS 5
static unsigned long suspend_test_start_time;
static void suspend_test_start(void)
{
/* FIXME Use better timebase than "jiffies", ideally a clocksource.
* What we want is a hardware counter that will work correctly even
* during the irqs-are-off stages of the suspend/resume cycle...
*/
suspend_test_start_time = jiffies;
}
static void suspend_test_finish(const char *label)
{
long nj = jiffies - suspend_test_start_time;
unsigned msec;
msec = jiffies_to_msecs(abs(nj));
pr_info("PM: %s took %d.%03d seconds\n", label,
msec / 1000, msec % 1000);
/* Warning on suspend means the RTC alarm period needs to be
* larger -- the system was sooo slooowwww to suspend that the
* alarm (should have) fired before the system went to sleep!
*
* Warning on either suspend or resume also means the system
* has some performance issues. The stack dump of a WARN_ON
* is more likely to get the right attention than a printk...
*/
WARN_ON(msec > (TEST_SUSPEND_SECONDS * 1000));
}
#else
static void suspend_test_start(void)
{
}
static void suspend_test_finish(const char *label)
{
}
#endif
/* This is just an arbitrary number */
#define FREE_PAGE_NUMBER (100)
static struct platform_suspend_ops *suspend_ops;
/**
* suspend_set_ops - Set the global suspend method table.
* @ops: Pointer to ops structure.
*/
void suspend_set_ops(struct platform_suspend_ops *ops)
{
mutex_lock(&pm_mutex);
suspend_ops = ops;
mutex_unlock(&pm_mutex);
}
/**
* suspend_valid_only_mem - generic memory-only valid callback
*
* Platform drivers that implement mem suspend only and only need
* to check for that in their .valid callback can use this instead
* of rolling their own .valid callback.
*/
int suspend_valid_only_mem(suspend_state_t state)
{
return state == PM_SUSPEND_MEM;
}
/**
* suspend_prepare - Do prep work before entering low-power state.
*
* This is common code that is called for each state that we're entering.
* Run suspend notifiers, allocate a console and stop all processes.
*/
static int suspend_prepare(void)
{
int error;
unsigned int free_pages;
if (!suspend_ops || !suspend_ops->enter)
return -EPERM;
pm_prepare_console();
error = pm_notifier_call_chain(PM_SUSPEND_PREPARE);
if (error)
goto Finish;
error = usermodehelper_disable();
if (error)
goto Finish;
if (suspend_freeze_processes()) {
error = -EAGAIN;
goto Thaw;
}
free_pages = global_page_state(NR_FREE_PAGES);
if (free_pages < FREE_PAGE_NUMBER) {
pr_debug("PM: free some memory\n");
shrink_all_memory(FREE_PAGE_NUMBER - free_pages);
if (nr_free_pages() < FREE_PAGE_NUMBER) {
error = -ENOMEM;
printk(KERN_ERR "PM: No enough memory\n");
}
}
if (!error)
return 0;
Thaw:
suspend_thaw_processes();
usermodehelper_enable();
Finish:
pm_notifier_call_chain(PM_POST_SUSPEND);
pm_restore_console();
return error;
}
/* default implementation */
void __attribute__ ((weak)) arch_suspend_disable_irqs(void)
{
local_irq_disable();
}
/* default implementation */
void __attribute__ ((weak)) arch_suspend_enable_irqs(void)
{
local_irq_enable();
}
/**
* suspend_enter - enter the desired system sleep state.
* @state: state to enter
*
* This function should be called after devices have been suspended.
*/
static int suspend_enter(suspend_state_t state)
{
int error = 0;
device_pm_lock();
arch_suspend_disable_irqs();
BUG_ON(!irqs_disabled());
if ((error = device_power_down(PMSG_SUSPEND))) {
printk(KERN_ERR "PM: Some devices failed to power down\n");
goto Done;
}
if (!suspend_test(TEST_CORE))
error = suspend_ops->enter(state);
device_power_up(PMSG_RESUME);
Done:
arch_suspend_enable_irqs();
BUG_ON(irqs_disabled());
device_pm_unlock();
return error;
}
/**
* suspend_devices_and_enter - suspend devices and enter the desired system
* sleep state.
* @state: state to enter
*/
int suspend_devices_and_enter(suspend_state_t state)
{
int error, ftrace_save;
if (!suspend_ops)
return -ENOSYS;
if (suspend_ops->begin) {
error = suspend_ops->begin(state);
if (error)
goto Close;
}
suspend_console();
ftrace_save = __ftrace_enabled_save();
suspend_test_start();
error = device_suspend(PMSG_SUSPEND);
if (error) {
printk(KERN_ERR "PM: Some devices failed to suspend\n");
goto Recover_platform;
}
suspend_test_finish("suspend devices");
if (suspend_test(TEST_DEVICES))
goto Recover_platform;
if (suspend_ops->prepare) {
error = suspend_ops->prepare();
if (error)
goto Resume_devices;
}
if (suspend_test(TEST_PLATFORM))
goto Finish;
error = disable_nonboot_cpus();
if (!error && !suspend_test(TEST_CPUS))
suspend_enter(state);
enable_nonboot_cpus();
Finish:
if (suspend_ops->finish)
suspend_ops->finish();
Resume_devices:
suspend_test_start();
device_resume(PMSG_RESUME);
suspend_test_finish("resume devices");
__ftrace_enabled_restore(ftrace_save);
resume_console();
Close:
if (suspend_ops->end)
suspend_ops->end();
return error;
Recover_platform:
if (suspend_ops->recover)
suspend_ops->recover();
goto Resume_devices;
}
/**
* suspend_finish - Do final work before exiting suspend sequence.
*
* Call platform code to clean up, restart processes, and free the
* console that we've allocated. This is not called for suspend-to-disk.
*/
static void suspend_finish(void)
{
suspend_thaw_processes();
usermodehelper_enable();
pm_notifier_call_chain(PM_POST_SUSPEND);
pm_restore_console();
}
static const char * const pm_states[PM_SUSPEND_MAX] = {
[PM_SUSPEND_STANDBY] = "standby",
[PM_SUSPEND_MEM] = "mem",
};
static inline int valid_state(suspend_state_t state)
{
/* All states need lowlevel support and need to be valid
* to the lowlevel implementation, no valid callback
* implies that none are valid. */
if (!suspend_ops || !suspend_ops->valid || !suspend_ops->valid(state))
return 0;
return 1;
}
/**
* enter_state - Do common work of entering low-power state.
* @state: pm_state structure for state we're entering.
*
* Make sure we're the only ones trying to enter a sleep state. Fail
* if someone has beat us to it, since we don't want anything weird to
* happen when we wake up.
* Then, do the setup for suspend, enter the state, and cleaup (after
* we've woken up).
*/
static int enter_state(suspend_state_t state)
{
int error;
if (!valid_state(state))
return -ENODEV;
if (!mutex_trylock(&pm_mutex))
return -EBUSY;
printk(KERN_INFO "PM: Syncing filesystems ... ");
sys_sync();
printk("done.\n");
pr_debug("PM: Preparing system for %s sleep\n", pm_states[state]);
error = suspend_prepare();
if (error)
goto Unlock;
if (suspend_test(TEST_FREEZER))
goto Finish;
pr_debug("PM: Entering %s sleep\n", pm_states[state]);
error = suspend_devices_and_enter(state);
Finish:
pr_debug("PM: Finishing wakeup.\n");
suspend_finish();
Unlock:
mutex_unlock(&pm_mutex);
return error;
}
/**
* pm_suspend - Externally visible function for suspending system.
* @state: Enumerated value of state to enter.
*
* Determine whether or not value is within range, get state
* structure, and enter (above).
*/
int pm_suspend(suspend_state_t state)
{
if (state > PM_SUSPEND_ON && state <= PM_SUSPEND_MAX)
return enter_state(state);
return -EINVAL;
}
EXPORT_SYMBOL(pm_suspend);
#endif /* CONFIG_SUSPEND */
struct kobject *power_kobj;
/**
* state - control system power state.
*
* show() returns what states are supported, which is hard-coded to
* 'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
* 'disk' (Suspend-to-Disk).
*
* store() accepts one of those strings, translates it into the
* proper enumerated value, and initiates a suspend transition.
*/
static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
char *s = buf;
#ifdef CONFIG_SUSPEND
int i;
for (i = 0; i < PM_SUSPEND_MAX; i++) {
if (pm_states[i] && valid_state(i))
s += sprintf(s,"%s ", pm_states[i]);
}
#endif
#ifdef CONFIG_HIBERNATION
s += sprintf(s, "%s\n", "disk");
#else
if (s != buf)
/* convert the last space to a newline */
*(s-1) = '\n';
#endif
return (s - buf);
}
static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
#ifdef CONFIG_SUSPEND
suspend_state_t state = PM_SUSPEND_STANDBY;
const char * const *s;
#endif
char *p;
int len;
int error = -EINVAL;
p = memchr(buf, '\n', n);
len = p ? p - buf : n;
/* First, check if we are requested to hibernate */
if (len == 4 && !strncmp(buf, "disk", len)) {
error = hibernate();
goto Exit;
}
#ifdef CONFIG_SUSPEND
for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
break;
}
if (state < PM_SUSPEND_MAX && *s)
error = enter_state(state);
#endif
Exit:
return error ? error : n;
}
power_attr(state);
#ifdef CONFIG_PM_TRACE
int pm_trace_enabled;
static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", pm_trace_enabled);
}
static ssize_t
pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
int val;
if (sscanf(buf, "%d", &val) == 1) {
pm_trace_enabled = !!val;
return n;
}
return -EINVAL;
}
power_attr(pm_trace);
#endif /* CONFIG_PM_TRACE */
static struct attribute * g[] = {
&state_attr.attr,
#ifdef CONFIG_PM_TRACE
&pm_trace_attr.attr,
#endif
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_PM_DEBUG)
&pm_test_attr.attr,
#endif
NULL,
};
static struct attribute_group attr_group = {
.attrs = g,
};
static int __init pm_init(void)
{
power_kobj = kobject_create_and_add("power", NULL);
if (!power_kobj)
return -ENOMEM;
return sysfs_create_group(power_kobj, &attr_group);
}
core_initcall(pm_init);
#ifdef CONFIG_PM_TEST_SUSPEND
#include <linux/rtc.h>
/*
* To test system suspend, we need a hands-off mechanism to resume the
* system. RTCs wake alarms are a common self-contained mechanism.
*/
static void __init test_wakealarm(struct rtc_device *rtc, suspend_state_t state)
{
static char err_readtime[] __initdata =
KERN_ERR "PM: can't read %s time, err %d\n";
static char err_wakealarm [] __initdata =
KERN_ERR "PM: can't set %s wakealarm, err %d\n";
static char err_suspend[] __initdata =
KERN_ERR "PM: suspend test failed, error %d\n";
static char info_test[] __initdata =
KERN_INFO "PM: test RTC wakeup from '%s' suspend\n";
unsigned long now;
struct rtc_wkalrm alm;
int status;
/* this may fail if the RTC hasn't been initialized */
status = rtc_read_time(rtc, &alm.time);
if (status < 0) {
printk(err_readtime, rtc->dev.bus_id, status);
return;
}
rtc_tm_to_time(&alm.time, &now);
memset(&alm, 0, sizeof alm);
rtc_time_to_tm(now + TEST_SUSPEND_SECONDS, &alm.time);
alm.enabled = true;
status = rtc_set_alarm(rtc, &alm);
if (status < 0) {
printk(err_wakealarm, rtc->dev.bus_id, status);
return;
}
if (state == PM_SUSPEND_MEM) {
printk(info_test, pm_states[state]);
status = pm_suspend(state);
if (status == -ENODEV)
state = PM_SUSPEND_STANDBY;
}
if (state == PM_SUSPEND_STANDBY) {
printk(info_test, pm_states[state]);
status = pm_suspend(state);
}
if (status < 0)
printk(err_suspend, status);
/* Some platforms can't detect that the alarm triggered the
* wakeup, or (accordingly) disable it after it afterwards.
* It's supposed to give oneshot behavior; cope.
*/
alm.enabled = false;
rtc_set_alarm(rtc, &alm);
}
static int __init has_wakealarm(struct device *dev, void *name_ptr)
{
struct rtc_device *candidate = to_rtc_device(dev);
if (!candidate->ops->set_alarm)
return 0;
if (!device_may_wakeup(candidate->dev.parent))
return 0;
*(char **)name_ptr = dev->bus_id;
return 1;
}
/*
* Kernel options like "test_suspend=mem" force suspend/resume sanity tests
* at startup time. They're normally disabled, for faster boot and because
* we can't know which states really work on this particular system.
*/
static suspend_state_t test_state __initdata = PM_SUSPEND_ON;
static char warn_bad_state[] __initdata =
KERN_WARNING "PM: can't test '%s' suspend state\n";
static int __init setup_test_suspend(char *value)
{
unsigned i;
/* "=mem" ==> "mem" */
value++;
for (i = 0; i < PM_SUSPEND_MAX; i++) {
if (!pm_states[i])
continue;
if (strcmp(pm_states[i], value) != 0)
continue;
test_state = (__force suspend_state_t) i;
return 0;
}
printk(warn_bad_state, value);
return 0;
}
__setup("test_suspend", setup_test_suspend);
static int __init test_suspend(void)
{
static char warn_no_rtc[] __initdata =
KERN_WARNING "PM: no wakealarm-capable RTC driver is ready\n";
char *pony = NULL;
struct rtc_device *rtc = NULL;
/* PM is initialized by now; is that state testable? */
if (test_state == PM_SUSPEND_ON)
goto done;
if (!valid_state(test_state)) {
printk(warn_bad_state, pm_states[test_state]);
goto done;
}
/* RTCs have initialized by now too ... can we use one? */
class_find_device(rtc_class, NULL, &pony, has_wakealarm);
if (pony)
rtc = rtc_class_open(pony);
if (!rtc) {
printk(warn_no_rtc);
goto done;
}
/* go for it */
test_wakealarm(rtc, test_state);
rtc_class_close(rtc);
done:
return 0;
}
late_initcall(test_suspend);
#endif /* CONFIG_PM_TEST_SUSPEND */