kernel-aes67/fs/ecryptfs/ecryptfs_kernel.h
Michael Halcrow d3e49afbb6 eCryptfs: remove unnecessary page decrypt call
The page decrypt calls in ecryptfs_write() are both pointless and buggy.
Pointless because ecryptfs_get_locked_page() has already brought the page
up to date, and buggy because prior mmap writes will just be blown away by
the decrypt call.

This patch also removes the declaration of a now-nonexistent function
ecryptfs_write_zeros().

Thanks to Eric Sandeen and David Kleikamp for helping to track this
down.

Eric said:

   fsx w/ mmap dies quickly ( < 100 ops) without this, and survives
   nicely (to millions of ops+) with it in place.

Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: Eric Sandeen <sandeen@redhat.com>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-06 11:29:09 -07:00

695 lines
24 KiB
C

/**
* eCryptfs: Linux filesystem encryption layer
* Kernel declarations.
*
* Copyright (C) 1997-2003 Erez Zadok
* Copyright (C) 2001-2003 Stony Brook University
* Copyright (C) 2004-2008 International Business Machines Corp.
* Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
* Trevor S. Highland <trevor.highland@gmail.com>
* Tyler Hicks <tyhicks@ou.edu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#ifndef ECRYPTFS_KERNEL_H
#define ECRYPTFS_KERNEL_H
#include <keys/user-type.h>
#include <linux/fs.h>
#include <linux/fs_stack.h>
#include <linux/namei.h>
#include <linux/scatterlist.h>
#include <linux/hash.h>
#include <linux/nsproxy.h>
/* Version verification for shared data structures w/ userspace */
#define ECRYPTFS_VERSION_MAJOR 0x00
#define ECRYPTFS_VERSION_MINOR 0x04
#define ECRYPTFS_SUPPORTED_FILE_VERSION 0x03
/* These flags indicate which features are supported by the kernel
* module; userspace tools such as the mount helper read
* ECRYPTFS_VERSIONING_MASK from a sysfs handle in order to determine
* how to behave. */
#define ECRYPTFS_VERSIONING_PASSPHRASE 0x00000001
#define ECRYPTFS_VERSIONING_PUBKEY 0x00000002
#define ECRYPTFS_VERSIONING_PLAINTEXT_PASSTHROUGH 0x00000004
#define ECRYPTFS_VERSIONING_POLICY 0x00000008
#define ECRYPTFS_VERSIONING_XATTR 0x00000010
#define ECRYPTFS_VERSIONING_MULTKEY 0x00000020
#define ECRYPTFS_VERSIONING_DEVMISC 0x00000040
#define ECRYPTFS_VERSIONING_MASK (ECRYPTFS_VERSIONING_PASSPHRASE \
| ECRYPTFS_VERSIONING_PLAINTEXT_PASSTHROUGH \
| ECRYPTFS_VERSIONING_PUBKEY \
| ECRYPTFS_VERSIONING_XATTR \
| ECRYPTFS_VERSIONING_MULTKEY \
| ECRYPTFS_VERSIONING_DEVMISC)
#define ECRYPTFS_MAX_PASSWORD_LENGTH 64
#define ECRYPTFS_MAX_PASSPHRASE_BYTES ECRYPTFS_MAX_PASSWORD_LENGTH
#define ECRYPTFS_SALT_SIZE 8
#define ECRYPTFS_SALT_SIZE_HEX (ECRYPTFS_SALT_SIZE*2)
/* The original signature size is only for what is stored on disk; all
* in-memory representations are expanded hex, so it better adapted to
* be passed around or referenced on the command line */
#define ECRYPTFS_SIG_SIZE 8
#define ECRYPTFS_SIG_SIZE_HEX (ECRYPTFS_SIG_SIZE*2)
#define ECRYPTFS_PASSWORD_SIG_SIZE ECRYPTFS_SIG_SIZE_HEX
#define ECRYPTFS_MAX_KEY_BYTES 64
#define ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES 512
#define ECRYPTFS_DEFAULT_IV_BYTES 16
#define ECRYPTFS_FILE_VERSION 0x03
#define ECRYPTFS_DEFAULT_EXTENT_SIZE 4096
#define ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE 8192
#define ECRYPTFS_DEFAULT_MSG_CTX_ELEMS 32
#define ECRYPTFS_DEFAULT_SEND_TIMEOUT HZ
#define ECRYPTFS_MAX_MSG_CTX_TTL (HZ*3)
#define ECRYPTFS_MAX_PKI_NAME_BYTES 16
#define ECRYPTFS_DEFAULT_NUM_USERS 4
#define ECRYPTFS_MAX_NUM_USERS 32768
#define ECRYPTFS_TRANSPORT_NETLINK 0
#define ECRYPTFS_TRANSPORT_CONNECTOR 1
#define ECRYPTFS_TRANSPORT_RELAYFS 2
#define ECRYPTFS_TRANSPORT_MISCDEV 3
#define ECRYPTFS_DEFAULT_TRANSPORT ECRYPTFS_TRANSPORT_MISCDEV
#define ECRYPTFS_XATTR_NAME "user.ecryptfs"
#define RFC2440_CIPHER_DES3_EDE 0x02
#define RFC2440_CIPHER_CAST_5 0x03
#define RFC2440_CIPHER_BLOWFISH 0x04
#define RFC2440_CIPHER_AES_128 0x07
#define RFC2440_CIPHER_AES_192 0x08
#define RFC2440_CIPHER_AES_256 0x09
#define RFC2440_CIPHER_TWOFISH 0x0a
#define RFC2440_CIPHER_CAST_6 0x0b
#define RFC2440_CIPHER_RSA 0x01
/**
* For convenience, we may need to pass around the encrypted session
* key between kernel and userspace because the authentication token
* may not be extractable. For example, the TPM may not release the
* private key, instead requiring the encrypted data and returning the
* decrypted data.
*/
struct ecryptfs_session_key {
#define ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT 0x00000001
#define ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT 0x00000002
#define ECRYPTFS_CONTAINS_DECRYPTED_KEY 0x00000004
#define ECRYPTFS_CONTAINS_ENCRYPTED_KEY 0x00000008
u32 flags;
u32 encrypted_key_size;
u32 decrypted_key_size;
u8 encrypted_key[ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES];
u8 decrypted_key[ECRYPTFS_MAX_KEY_BYTES];
};
struct ecryptfs_password {
u32 password_bytes;
s32 hash_algo;
u32 hash_iterations;
u32 session_key_encryption_key_bytes;
#define ECRYPTFS_PERSISTENT_PASSWORD 0x01
#define ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET 0x02
u32 flags;
/* Iterated-hash concatenation of salt and passphrase */
u8 session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
u8 signature[ECRYPTFS_PASSWORD_SIG_SIZE + 1];
/* Always in expanded hex */
u8 salt[ECRYPTFS_SALT_SIZE];
};
enum ecryptfs_token_types {ECRYPTFS_PASSWORD, ECRYPTFS_PRIVATE_KEY};
struct ecryptfs_private_key {
u32 key_size;
u32 data_len;
u8 signature[ECRYPTFS_PASSWORD_SIG_SIZE + 1];
char pki_type[ECRYPTFS_MAX_PKI_NAME_BYTES + 1];
u8 data[];
};
/* May be a password or a private key */
struct ecryptfs_auth_tok {
u16 version; /* 8-bit major and 8-bit minor */
u16 token_type;
#define ECRYPTFS_ENCRYPT_ONLY 0x00000001
u32 flags;
struct ecryptfs_session_key session_key;
u8 reserved[32];
union {
struct ecryptfs_password password;
struct ecryptfs_private_key private_key;
} token;
} __attribute__ ((packed));
void ecryptfs_dump_auth_tok(struct ecryptfs_auth_tok *auth_tok);
extern void ecryptfs_to_hex(char *dst, char *src, size_t src_size);
extern void ecryptfs_from_hex(char *dst, char *src, int dst_size);
struct ecryptfs_key_record {
unsigned char type;
size_t enc_key_size;
unsigned char sig[ECRYPTFS_SIG_SIZE];
unsigned char enc_key[ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES];
};
struct ecryptfs_auth_tok_list {
struct ecryptfs_auth_tok *auth_tok;
struct list_head list;
};
struct ecryptfs_crypt_stat;
struct ecryptfs_mount_crypt_stat;
struct ecryptfs_page_crypt_context {
struct page *page;
#define ECRYPTFS_PREPARE_COMMIT_MODE 0
#define ECRYPTFS_WRITEPAGE_MODE 1
unsigned int mode;
union {
struct file *lower_file;
struct writeback_control *wbc;
} param;
};
static inline struct ecryptfs_auth_tok *
ecryptfs_get_key_payload_data(struct key *key)
{
return (struct ecryptfs_auth_tok *)
(((struct user_key_payload*)key->payload.data)->data);
}
#define ECRYPTFS_SUPER_MAGIC 0xf15f
#define ECRYPTFS_MAX_KEYSET_SIZE 1024
#define ECRYPTFS_MAX_CIPHER_NAME_SIZE 32
#define ECRYPTFS_MAX_NUM_ENC_KEYS 64
#define ECRYPTFS_MAX_IV_BYTES 16 /* 128 bits */
#define ECRYPTFS_SALT_BYTES 2
#define MAGIC_ECRYPTFS_MARKER 0x3c81b7f5
#define MAGIC_ECRYPTFS_MARKER_SIZE_BYTES 8 /* 4*2 */
#define ECRYPTFS_FILE_SIZE_BYTES (sizeof(u64))
#define ECRYPTFS_DEFAULT_CIPHER "aes"
#define ECRYPTFS_DEFAULT_KEY_BYTES 16
#define ECRYPTFS_DEFAULT_HASH "md5"
#define ECRYPTFS_TAG_1_PACKET_TYPE 0x01
#define ECRYPTFS_TAG_3_PACKET_TYPE 0x8C
#define ECRYPTFS_TAG_11_PACKET_TYPE 0xED
#define ECRYPTFS_TAG_64_PACKET_TYPE 0x40
#define ECRYPTFS_TAG_65_PACKET_TYPE 0x41
#define ECRYPTFS_TAG_66_PACKET_TYPE 0x42
#define ECRYPTFS_TAG_67_PACKET_TYPE 0x43
#define MD5_DIGEST_SIZE 16
struct ecryptfs_key_sig {
struct list_head crypt_stat_list;
char keysig[ECRYPTFS_SIG_SIZE_HEX];
};
/**
* This is the primary struct associated with each encrypted file.
*
* TODO: cache align/pack?
*/
struct ecryptfs_crypt_stat {
#define ECRYPTFS_STRUCT_INITIALIZED 0x00000001
#define ECRYPTFS_POLICY_APPLIED 0x00000002
#define ECRYPTFS_NEW_FILE 0x00000004
#define ECRYPTFS_ENCRYPTED 0x00000008
#define ECRYPTFS_SECURITY_WARNING 0x00000010
#define ECRYPTFS_ENABLE_HMAC 0x00000020
#define ECRYPTFS_ENCRYPT_IV_PAGES 0x00000040
#define ECRYPTFS_KEY_VALID 0x00000080
#define ECRYPTFS_METADATA_IN_XATTR 0x00000100
#define ECRYPTFS_VIEW_AS_ENCRYPTED 0x00000200
#define ECRYPTFS_KEY_SET 0x00000400
u32 flags;
unsigned int file_version;
size_t iv_bytes;
size_t num_header_bytes_at_front;
size_t extent_size; /* Data extent size; default is 4096 */
size_t key_size;
size_t extent_shift;
unsigned int extent_mask;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
struct crypto_blkcipher *tfm;
struct crypto_hash *hash_tfm; /* Crypto context for generating
* the initialization vectors */
unsigned char cipher[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
unsigned char key[ECRYPTFS_MAX_KEY_BYTES];
unsigned char root_iv[ECRYPTFS_MAX_IV_BYTES];
struct list_head keysig_list;
struct mutex keysig_list_mutex;
struct mutex cs_tfm_mutex;
struct mutex cs_hash_tfm_mutex;
struct mutex cs_mutex;
};
/* inode private data. */
struct ecryptfs_inode_info {
struct inode vfs_inode;
struct inode *wii_inode;
struct file *lower_file;
struct mutex lower_file_mutex;
struct ecryptfs_crypt_stat crypt_stat;
};
/* dentry private data. Each dentry must keep track of a lower
* vfsmount too. */
struct ecryptfs_dentry_info {
struct path lower_path;
struct ecryptfs_crypt_stat *crypt_stat;
};
/**
* ecryptfs_global_auth_tok - A key used to encrypt all new files under the mountpoint
* @flags: Status flags
* @mount_crypt_stat_list: These auth_toks hang off the mount-wide
* cryptographic context. Every time a new
* inode comes into existence, eCryptfs copies
* the auth_toks on that list to the set of
* auth_toks on the inode's crypt_stat
* @global_auth_tok_key: The key from the user's keyring for the sig
* @global_auth_tok: The key contents
* @sig: The key identifier
*
* ecryptfs_global_auth_tok structs refer to authentication token keys
* in the user keyring that apply to newly created files. A list of
* these objects hangs off of the mount_crypt_stat struct for any
* given eCryptfs mount. This struct maintains a reference to both the
* key contents and the key itself so that the key can be put on
* unmount.
*/
struct ecryptfs_global_auth_tok {
#define ECRYPTFS_AUTH_TOK_INVALID 0x00000001
u32 flags;
struct list_head mount_crypt_stat_list;
struct key *global_auth_tok_key;
struct ecryptfs_auth_tok *global_auth_tok;
unsigned char sig[ECRYPTFS_SIG_SIZE_HEX + 1];
};
/**
* ecryptfs_key_tfm - Persistent key tfm
* @key_tfm: crypto API handle to the key
* @key_size: Key size in bytes
* @key_tfm_mutex: Mutex to ensure only one operation in eCryptfs is
* using the persistent TFM at any point in time
* @key_tfm_list: Handle to hang this off the module-wide TFM list
* @cipher_name: String name for the cipher for this TFM
*
* Typically, eCryptfs will use the same ciphers repeatedly throughout
* the course of its operations. In order to avoid unnecessarily
* destroying and initializing the same cipher repeatedly, eCryptfs
* keeps a list of crypto API contexts around to use when needed.
*/
struct ecryptfs_key_tfm {
struct crypto_blkcipher *key_tfm;
size_t key_size;
struct mutex key_tfm_mutex;
struct list_head key_tfm_list;
unsigned char cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
};
extern struct mutex key_tfm_list_mutex;
/**
* This struct is to enable a mount-wide passphrase/salt combo. This
* is more or less a stopgap to provide similar functionality to other
* crypto filesystems like EncFS or CFS until full policy support is
* implemented in eCryptfs.
*/
struct ecryptfs_mount_crypt_stat {
/* Pointers to memory we do not own, do not free these */
#define ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED 0x00000001
#define ECRYPTFS_XATTR_METADATA_ENABLED 0x00000002
#define ECRYPTFS_ENCRYPTED_VIEW_ENABLED 0x00000004
#define ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED 0x00000008
u32 flags;
struct list_head global_auth_tok_list;
struct mutex global_auth_tok_list_mutex;
size_t num_global_auth_toks;
size_t global_default_cipher_key_size;
unsigned char global_default_cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE
+ 1];
};
/* superblock private data. */
struct ecryptfs_sb_info {
struct super_block *wsi_sb;
struct ecryptfs_mount_crypt_stat mount_crypt_stat;
};
/* file private data. */
struct ecryptfs_file_info {
struct file *wfi_file;
struct ecryptfs_crypt_stat *crypt_stat;
};
/* auth_tok <=> encrypted_session_key mappings */
struct ecryptfs_auth_tok_list_item {
unsigned char encrypted_session_key[ECRYPTFS_MAX_KEY_BYTES];
struct list_head list;
struct ecryptfs_auth_tok auth_tok;
};
struct ecryptfs_message {
/* Can never be greater than ecryptfs_message_buf_len */
/* Used to find the parent msg_ctx */
/* Inherits from msg_ctx->index */
u32 index;
u32 data_len;
u8 data[];
};
struct ecryptfs_msg_ctx {
#define ECRYPTFS_MSG_CTX_STATE_FREE 0x01
#define ECRYPTFS_MSG_CTX_STATE_PENDING 0x02
#define ECRYPTFS_MSG_CTX_STATE_DONE 0x03
#define ECRYPTFS_MSG_CTX_STATE_NO_REPLY 0x04
u8 state;
#define ECRYPTFS_MSG_HELO 100
#define ECRYPTFS_MSG_QUIT 101
#define ECRYPTFS_MSG_REQUEST 102
#define ECRYPTFS_MSG_RESPONSE 103
u8 type;
u32 index;
/* Counter converts to a sequence number. Each message sent
* out for which we expect a response has an associated
* sequence number. The response must have the same sequence
* number as the counter for the msg_stc for the message to be
* valid. */
u32 counter;
size_t msg_size;
struct ecryptfs_message *msg;
struct task_struct *task;
struct list_head node;
struct list_head daemon_out_list;
struct mutex mux;
};
extern unsigned int ecryptfs_transport;
struct ecryptfs_daemon;
struct ecryptfs_daemon {
#define ECRYPTFS_DAEMON_IN_READ 0x00000001
#define ECRYPTFS_DAEMON_IN_POLL 0x00000002
#define ECRYPTFS_DAEMON_ZOMBIE 0x00000004
#define ECRYPTFS_DAEMON_MISCDEV_OPEN 0x00000008
u32 flags;
u32 num_queued_msg_ctx;
struct pid *pid;
uid_t euid;
struct user_namespace *user_ns;
struct task_struct *task;
struct mutex mux;
struct list_head msg_ctx_out_queue;
wait_queue_head_t wait;
struct hlist_node euid_chain;
};
extern struct mutex ecryptfs_daemon_hash_mux;
static inline struct ecryptfs_file_info *
ecryptfs_file_to_private(struct file *file)
{
return (struct ecryptfs_file_info *)file->private_data;
}
static inline void
ecryptfs_set_file_private(struct file *file,
struct ecryptfs_file_info *file_info)
{
file->private_data = file_info;
}
static inline struct file *ecryptfs_file_to_lower(struct file *file)
{
return ((struct ecryptfs_file_info *)file->private_data)->wfi_file;
}
static inline void
ecryptfs_set_file_lower(struct file *file, struct file *lower_file)
{
((struct ecryptfs_file_info *)file->private_data)->wfi_file =
lower_file;
}
static inline struct ecryptfs_inode_info *
ecryptfs_inode_to_private(struct inode *inode)
{
return container_of(inode, struct ecryptfs_inode_info, vfs_inode);
}
static inline struct inode *ecryptfs_inode_to_lower(struct inode *inode)
{
return ecryptfs_inode_to_private(inode)->wii_inode;
}
static inline void
ecryptfs_set_inode_lower(struct inode *inode, struct inode *lower_inode)
{
ecryptfs_inode_to_private(inode)->wii_inode = lower_inode;
}
static inline struct ecryptfs_sb_info *
ecryptfs_superblock_to_private(struct super_block *sb)
{
return (struct ecryptfs_sb_info *)sb->s_fs_info;
}
static inline void
ecryptfs_set_superblock_private(struct super_block *sb,
struct ecryptfs_sb_info *sb_info)
{
sb->s_fs_info = sb_info;
}
static inline struct super_block *
ecryptfs_superblock_to_lower(struct super_block *sb)
{
return ((struct ecryptfs_sb_info *)sb->s_fs_info)->wsi_sb;
}
static inline void
ecryptfs_set_superblock_lower(struct super_block *sb,
struct super_block *lower_sb)
{
((struct ecryptfs_sb_info *)sb->s_fs_info)->wsi_sb = lower_sb;
}
static inline struct ecryptfs_dentry_info *
ecryptfs_dentry_to_private(struct dentry *dentry)
{
return (struct ecryptfs_dentry_info *)dentry->d_fsdata;
}
static inline void
ecryptfs_set_dentry_private(struct dentry *dentry,
struct ecryptfs_dentry_info *dentry_info)
{
dentry->d_fsdata = dentry_info;
}
static inline struct dentry *
ecryptfs_dentry_to_lower(struct dentry *dentry)
{
return ((struct ecryptfs_dentry_info *)dentry->d_fsdata)->lower_path.dentry;
}
static inline void
ecryptfs_set_dentry_lower(struct dentry *dentry, struct dentry *lower_dentry)
{
((struct ecryptfs_dentry_info *)dentry->d_fsdata)->lower_path.dentry =
lower_dentry;
}
static inline struct vfsmount *
ecryptfs_dentry_to_lower_mnt(struct dentry *dentry)
{
return ((struct ecryptfs_dentry_info *)dentry->d_fsdata)->lower_path.mnt;
}
static inline void
ecryptfs_set_dentry_lower_mnt(struct dentry *dentry, struct vfsmount *lower_mnt)
{
((struct ecryptfs_dentry_info *)dentry->d_fsdata)->lower_path.mnt =
lower_mnt;
}
#define ecryptfs_printk(type, fmt, arg...) \
__ecryptfs_printk(type "%s: " fmt, __func__, ## arg);
void __ecryptfs_printk(const char *fmt, ...);
extern const struct file_operations ecryptfs_main_fops;
extern const struct file_operations ecryptfs_dir_fops;
extern const struct inode_operations ecryptfs_main_iops;
extern const struct inode_operations ecryptfs_dir_iops;
extern const struct inode_operations ecryptfs_symlink_iops;
extern const struct super_operations ecryptfs_sops;
extern struct dentry_operations ecryptfs_dops;
extern struct address_space_operations ecryptfs_aops;
extern int ecryptfs_verbosity;
extern unsigned int ecryptfs_message_buf_len;
extern signed long ecryptfs_message_wait_timeout;
extern unsigned int ecryptfs_number_of_users;
extern struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
extern struct kmem_cache *ecryptfs_file_info_cache;
extern struct kmem_cache *ecryptfs_dentry_info_cache;
extern struct kmem_cache *ecryptfs_inode_info_cache;
extern struct kmem_cache *ecryptfs_sb_info_cache;
extern struct kmem_cache *ecryptfs_header_cache_1;
extern struct kmem_cache *ecryptfs_header_cache_2;
extern struct kmem_cache *ecryptfs_xattr_cache;
extern struct kmem_cache *ecryptfs_key_record_cache;
extern struct kmem_cache *ecryptfs_key_sig_cache;
extern struct kmem_cache *ecryptfs_global_auth_tok_cache;
extern struct kmem_cache *ecryptfs_key_tfm_cache;
int ecryptfs_interpose(struct dentry *hidden_dentry,
struct dentry *this_dentry, struct super_block *sb,
int flag);
int ecryptfs_fill_zeros(struct file *file, loff_t new_length);
int ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
const char *name, int length,
char **decrypted_name);
int ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
const char *name, int length,
char **encoded_name);
struct dentry *ecryptfs_lower_dentry(struct dentry *this_dentry);
void ecryptfs_dump_hex(char *data, int bytes);
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
int sg_size);
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat);
void ecryptfs_rotate_iv(unsigned char *iv);
void ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat);
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat);
void ecryptfs_destroy_mount_crypt_stat(
struct ecryptfs_mount_crypt_stat *mount_crypt_stat);
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat);
int ecryptfs_write_inode_size_to_metadata(struct inode *ecryptfs_inode);
int ecryptfs_encrypt_page(struct page *page);
int ecryptfs_decrypt_page(struct page *page);
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry);
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry);
int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry);
int ecryptfs_read_and_validate_header_region(char *data,
struct inode *ecryptfs_inode);
int ecryptfs_read_and_validate_xattr_region(char *page_virt,
struct dentry *ecryptfs_dentry);
u8 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat);
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code);
void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat);
int ecryptfs_generate_key_packet_set(char *dest_base,
struct ecryptfs_crypt_stat *crypt_stat,
struct dentry *ecryptfs_dentry,
size_t *len, size_t max);
int
ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
unsigned char *src, struct dentry *ecryptfs_dentry);
int ecryptfs_truncate(struct dentry *dentry, loff_t new_length);
int ecryptfs_inode_test(struct inode *inode, void *candidate_lower_inode);
int ecryptfs_inode_set(struct inode *inode, void *lower_inode);
void ecryptfs_init_inode(struct inode *inode, struct inode *lower_inode);
ssize_t
ecryptfs_getxattr_lower(struct dentry *lower_dentry, const char *name,
void *value, size_t size);
int
ecryptfs_setxattr(struct dentry *dentry, const char *name, const void *value,
size_t size, int flags);
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode);
int ecryptfs_process_helo(unsigned int transport, uid_t euid,
struct user_namespace *user_ns, struct pid *pid);
int ecryptfs_process_quit(uid_t euid, struct user_namespace *user_ns,
struct pid *pid);
int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t euid,
struct user_namespace *user_ns, struct pid *pid,
u32 seq);
int ecryptfs_send_message(unsigned int transport, char *data, int data_len,
struct ecryptfs_msg_ctx **msg_ctx);
int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
struct ecryptfs_message **emsg);
int ecryptfs_init_messaging(unsigned int transport);
void ecryptfs_release_messaging(unsigned int transport);
int ecryptfs_send_netlink(char *data, int data_len,
struct ecryptfs_msg_ctx *msg_ctx, u8 msg_type,
u16 msg_flags, struct pid *daemon_pid);
int ecryptfs_init_netlink(void);
void ecryptfs_release_netlink(void);
int ecryptfs_send_connector(char *data, int data_len,
struct ecryptfs_msg_ctx *msg_ctx, u8 msg_type,
u16 msg_flags, struct pid *daemon_pid);
int ecryptfs_init_connector(void);
void ecryptfs_release_connector(void);
void
ecryptfs_write_header_metadata(char *virt,
struct ecryptfs_crypt_stat *crypt_stat,
size_t *written);
int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig);
int
ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
char *sig);
int ecryptfs_get_global_auth_tok_for_sig(
struct ecryptfs_global_auth_tok **global_auth_tok,
struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig);
int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
size_t key_size);
int ecryptfs_init_crypto(void);
int ecryptfs_destroy_crypto(void);
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm);
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
struct mutex **tfm_mutex,
char *cipher_name);
int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
struct ecryptfs_auth_tok **auth_tok,
char *sig);
int ecryptfs_write_lower(struct inode *ecryptfs_inode, char *data,
loff_t offset, size_t size);
int ecryptfs_write_lower_page_segment(struct inode *ecryptfs_inode,
struct page *page_for_lower,
size_t offset_in_page, size_t size);
int ecryptfs_write(struct file *ecryptfs_file, char *data, loff_t offset,
size_t size);
int ecryptfs_read_lower(char *data, loff_t offset, size_t size,
struct inode *ecryptfs_inode);
int ecryptfs_read_lower_page_segment(struct page *page_for_ecryptfs,
pgoff_t page_index,
size_t offset_in_page, size_t size,
struct inode *ecryptfs_inode);
struct page *ecryptfs_get_locked_page(struct file *file, loff_t index);
int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon);
int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon, uid_t euid,
struct user_namespace *user_ns);
int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
size_t *length_size);
int ecryptfs_write_packet_length(char *dest, size_t size,
size_t *packet_size_length);
int ecryptfs_init_ecryptfs_miscdev(void);
void ecryptfs_destroy_ecryptfs_miscdev(void);
int ecryptfs_send_miscdev(char *data, size_t data_size,
struct ecryptfs_msg_ctx *msg_ctx, u8 msg_type,
u16 msg_flags, struct ecryptfs_daemon *daemon);
void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx);
int
ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, uid_t euid,
struct user_namespace *user_ns, struct pid *pid);
#endif /* #ifndef ECRYPTFS_KERNEL_H */