kernel-aes67/drivers/atm/fore200e.c
Al Viro dd0fc66fb3 [PATCH] gfp flags annotations - part 1
- added typedef unsigned int __nocast gfp_t;

 - replaced __nocast uses for gfp flags with gfp_t - it gives exactly
   the same warnings as far as sparse is concerned, doesn't change
   generated code (from gcc point of view we replaced unsigned int with
   typedef) and documents what's going on far better.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-08 15:00:57 -07:00

3244 lines
90 KiB
C

/*
$Id: fore200e.c,v 1.5 2000/04/14 10:10:34 davem Exp $
A FORE Systems 200E-series driver for ATM on Linux.
Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
This driver simultaneously supports PCA-200E and SBA-200E adapters
on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/capability.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/atmdev.h>
#include <linux/sonet.h>
#include <linux/atm_suni.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/string.h>
#include <asm/page.h>
#include <asm/irq.h>
#include <asm/dma.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
#include <asm/atomic.h>
#ifdef CONFIG_ATM_FORE200E_SBA
#include <asm/idprom.h>
#include <asm/sbus.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/pgtable.h>
#endif
#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
#define FORE200E_USE_TASKLET
#endif
#if 0 /* enable the debugging code of the buffer supply queues */
#define FORE200E_BSQ_DEBUG
#endif
#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
#define FORE200E_52BYTE_AAL0_SDU
#endif
#include "fore200e.h"
#include "suni.h"
#define FORE200E_VERSION "0.3e"
#define FORE200E "fore200e: "
#if 0 /* override .config */
#define CONFIG_ATM_FORE200E_DEBUG 1
#endif
#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
printk(FORE200E format, ##args); } while (0)
#else
#define DPRINTK(level, format, args...) do {} while (0)
#endif
#define FORE200E_ALIGN(addr, alignment) \
((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
#define FORE200E_NEXT_ENTRY(index, modulo) (index = ++(index) % (modulo))
#if 1
#define ASSERT(expr) if (!(expr)) { \
printk(FORE200E "assertion failed! %s[%d]: %s\n", \
__FUNCTION__, __LINE__, #expr); \
panic(FORE200E "%s", __FUNCTION__); \
}
#else
#define ASSERT(expr) do {} while (0)
#endif
static const struct atmdev_ops fore200e_ops;
static const struct fore200e_bus fore200e_bus[];
static LIST_HEAD(fore200e_boards);
MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
{ BUFFER_S1_NBR, BUFFER_L1_NBR },
{ BUFFER_S2_NBR, BUFFER_L2_NBR }
};
static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
{ BUFFER_S1_SIZE, BUFFER_L1_SIZE },
{ BUFFER_S2_SIZE, BUFFER_L2_SIZE }
};
#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
#endif
#if 0 /* currently unused */
static int
fore200e_fore2atm_aal(enum fore200e_aal aal)
{
switch(aal) {
case FORE200E_AAL0: return ATM_AAL0;
case FORE200E_AAL34: return ATM_AAL34;
case FORE200E_AAL5: return ATM_AAL5;
}
return -EINVAL;
}
#endif
static enum fore200e_aal
fore200e_atm2fore_aal(int aal)
{
switch(aal) {
case ATM_AAL0: return FORE200E_AAL0;
case ATM_AAL34: return FORE200E_AAL34;
case ATM_AAL1:
case ATM_AAL2:
case ATM_AAL5: return FORE200E_AAL5;
}
return -EINVAL;
}
static char*
fore200e_irq_itoa(int irq)
{
#if defined(__sparc_v9__)
return __irq_itoa(irq);
#else
static char str[8];
sprintf(str, "%d", irq);
return str;
#endif
}
static void*
fore200e_kmalloc(int size, gfp_t flags)
{
void *chunk = kzalloc(size, flags);
if (!chunk)
printk(FORE200E "kmalloc() failed, requested size = %d, flags = 0x%x\n", size, flags);
return chunk;
}
static void
fore200e_kfree(void* chunk)
{
kfree(chunk);
}
/* allocate and align a chunk of memory intended to hold the data behing exchanged
between the driver and the adapter (using streaming DVMA) */
static int
fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
{
unsigned long offset = 0;
if (alignment <= sizeof(int))
alignment = 0;
chunk->alloc_size = size + alignment;
chunk->align_size = size;
chunk->direction = direction;
chunk->alloc_addr = fore200e_kmalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
if (chunk->alloc_addr == NULL)
return -ENOMEM;
if (alignment > 0)
offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
chunk->align_addr = chunk->alloc_addr + offset;
chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
return 0;
}
/* free a chunk of memory */
static void
fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
{
fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
fore200e_kfree(chunk->alloc_addr);
}
static void
fore200e_spin(int msecs)
{
unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
while (time_before(jiffies, timeout));
}
static int
fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
{
unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
int ok;
mb();
do {
if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
break;
} while (time_before(jiffies, timeout));
#if 1
if (!ok) {
printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
*addr, val);
}
#endif
return ok;
}
static int
fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
{
unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
int ok;
do {
if ((ok = (fore200e->bus->read(addr) == val)))
break;
} while (time_before(jiffies, timeout));
#if 1
if (!ok) {
printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
fore200e->bus->read(addr), val);
}
#endif
return ok;
}
static void
fore200e_free_rx_buf(struct fore200e* fore200e)
{
int scheme, magn, nbr;
struct buffer* buffer;
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
struct chunk* data = &buffer[ nbr ].data;
if (data->alloc_addr != NULL)
fore200e_chunk_free(fore200e, data);
}
}
}
}
}
static void
fore200e_uninit_bs_queue(struct fore200e* fore200e)
{
int scheme, magn;
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
if (status->alloc_addr)
fore200e->bus->dma_chunk_free(fore200e, status);
if (rbd_block->alloc_addr)
fore200e->bus->dma_chunk_free(fore200e, rbd_block);
}
}
}
static int
fore200e_reset(struct fore200e* fore200e, int diag)
{
int ok;
fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
fore200e->bus->reset(fore200e);
if (diag) {
ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
if (ok == 0) {
printk(FORE200E "device %s self-test failed\n", fore200e->name);
return -ENODEV;
}
printk(FORE200E "device %s self-test passed\n", fore200e->name);
fore200e->state = FORE200E_STATE_RESET;
}
return 0;
}
static void
fore200e_shutdown(struct fore200e* fore200e)
{
printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
fore200e->name, fore200e->phys_base,
fore200e_irq_itoa(fore200e->irq));
if (fore200e->state > FORE200E_STATE_RESET) {
/* first, reset the board to prevent further interrupts or data transfers */
fore200e_reset(fore200e, 0);
}
/* then, release all allocated resources */
switch(fore200e->state) {
case FORE200E_STATE_COMPLETE:
kfree(fore200e->stats);
case FORE200E_STATE_IRQ:
free_irq(fore200e->irq, fore200e->atm_dev);
case FORE200E_STATE_ALLOC_BUF:
fore200e_free_rx_buf(fore200e);
case FORE200E_STATE_INIT_BSQ:
fore200e_uninit_bs_queue(fore200e);
case FORE200E_STATE_INIT_RXQ:
fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
case FORE200E_STATE_INIT_TXQ:
fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
case FORE200E_STATE_INIT_CMDQ:
fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
case FORE200E_STATE_INITIALIZE:
/* nothing to do for that state */
case FORE200E_STATE_START_FW:
/* nothing to do for that state */
case FORE200E_STATE_LOAD_FW:
/* nothing to do for that state */
case FORE200E_STATE_RESET:
/* nothing to do for that state */
case FORE200E_STATE_MAP:
fore200e->bus->unmap(fore200e);
case FORE200E_STATE_CONFIGURE:
/* nothing to do for that state */
case FORE200E_STATE_REGISTER:
/* XXX shouldn't we *start* by deregistering the device? */
atm_dev_deregister(fore200e->atm_dev);
case FORE200E_STATE_BLANK:
/* nothing to do for that state */
break;
}
}
#ifdef CONFIG_ATM_FORE200E_PCA
static u32 fore200e_pca_read(volatile u32 __iomem *addr)
{
/* on big-endian hosts, the board is configured to convert
the endianess of slave RAM accesses */
return le32_to_cpu(readl(addr));
}
static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
{
/* on big-endian hosts, the board is configured to convert
the endianess of slave RAM accesses */
writel(cpu_to_le32(val), addr);
}
static u32
fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
{
u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n",
virt_addr, size, direction, dma_addr);
return dma_addr;
}
static void
fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
{
DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
dma_addr, size, direction);
pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
}
static void
fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
{
DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
}
static void
fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
{
DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
}
/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
(to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
static int
fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
int size, int nbr, int alignment)
{
/* returned chunks are page-aligned */
chunk->alloc_size = size * nbr;
chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
chunk->alloc_size,
&chunk->dma_addr);
if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
return -ENOMEM;
chunk->align_addr = chunk->alloc_addr;
return 0;
}
/* free a DMA consistent chunk of memory */
static void
fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
{
pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
chunk->alloc_size,
chunk->alloc_addr,
chunk->dma_addr);
}
static int
fore200e_pca_irq_check(struct fore200e* fore200e)
{
/* this is a 1 bit register */
int irq_posted = readl(fore200e->regs.pca.psr);
#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
}
#endif
return irq_posted;
}
static void
fore200e_pca_irq_ack(struct fore200e* fore200e)
{
writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
}
static void
fore200e_pca_reset(struct fore200e* fore200e)
{
writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
fore200e_spin(10);
writel(0, fore200e->regs.pca.hcr);
}
static int __init
fore200e_pca_map(struct fore200e* fore200e)
{
DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
if (fore200e->virt_base == NULL) {
printk(FORE200E "can't map device %s\n", fore200e->name);
return -EFAULT;
}
DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
/* gain access to the PCA specific registers */
fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
fore200e->state = FORE200E_STATE_MAP;
return 0;
}
static void
fore200e_pca_unmap(struct fore200e* fore200e)
{
DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
if (fore200e->virt_base != NULL)
iounmap(fore200e->virt_base);
}
static int __init
fore200e_pca_configure(struct fore200e* fore200e)
{
struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
u8 master_ctrl, latency;
DPRINTK(2, "device %s being configured\n", fore200e->name);
if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
return -EIO;
}
pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
master_ctrl = master_ctrl
#if defined(__BIG_ENDIAN)
/* request the PCA board to convert the endianess of slave RAM accesses */
| PCA200E_CTRL_CONVERT_ENDIAN
#endif
#if 0
| PCA200E_CTRL_DIS_CACHE_RD
| PCA200E_CTRL_DIS_WRT_INVAL
| PCA200E_CTRL_ENA_CONT_REQ_MODE
| PCA200E_CTRL_2_CACHE_WRT_INVAL
#endif
| PCA200E_CTRL_LARGE_PCI_BURSTS;
pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
/* raise latency from 32 (default) to 192, as this seems to prevent NIC
lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
this may impact the performances of other PCI devices on the same bus, though */
latency = 192;
pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
fore200e->state = FORE200E_STATE_CONFIGURE;
return 0;
}
static int __init
fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
{
struct host_cmdq* cmdq = &fore200e->host_cmdq;
struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
struct prom_opcode opcode;
int ok;
u32 prom_dma;
FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
opcode.opcode = OPCODE_GET_PROM;
opcode.pad = 0;
prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
*entry->status = STATUS_PENDING;
fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
*entry->status = STATUS_FREE;
fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
if (ok == 0) {
printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
return -EIO;
}
#if defined(__BIG_ENDIAN)
#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
/* MAC address is stored as little-endian */
swap_here(&prom->mac_addr[0]);
swap_here(&prom->mac_addr[4]);
#endif
return 0;
}
static int
fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
{
struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
}
#endif /* CONFIG_ATM_FORE200E_PCA */
#ifdef CONFIG_ATM_FORE200E_SBA
static u32
fore200e_sba_read(volatile u32 __iomem *addr)
{
return sbus_readl(addr);
}
static void
fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
{
sbus_writel(val, addr);
}
static u32
fore200e_sba_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
{
u32 dma_addr = sbus_map_single((struct sbus_dev*)fore200e->bus_dev, virt_addr, size, direction);
DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
virt_addr, size, direction, dma_addr);
return dma_addr;
}
static void
fore200e_sba_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
{
DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
dma_addr, size, direction);
sbus_unmap_single((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction);
}
static void
fore200e_sba_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
{
DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
sbus_dma_sync_single_for_cpu((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction);
}
static void
fore200e_sba_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
{
DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
sbus_dma_sync_single_for_device((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction);
}
/* allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
(to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
static int
fore200e_sba_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
int size, int nbr, int alignment)
{
chunk->alloc_size = chunk->align_size = size * nbr;
/* returned chunks are page-aligned */
chunk->alloc_addr = sbus_alloc_consistent((struct sbus_dev*)fore200e->bus_dev,
chunk->alloc_size,
&chunk->dma_addr);
if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
return -ENOMEM;
chunk->align_addr = chunk->alloc_addr;
return 0;
}
/* free a DVMA consistent chunk of memory */
static void
fore200e_sba_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
{
sbus_free_consistent((struct sbus_dev*)fore200e->bus_dev,
chunk->alloc_size,
chunk->alloc_addr,
chunk->dma_addr);
}
static void
fore200e_sba_irq_enable(struct fore200e* fore200e)
{
u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
}
static int
fore200e_sba_irq_check(struct fore200e* fore200e)
{
return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
}
static void
fore200e_sba_irq_ack(struct fore200e* fore200e)
{
u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
}
static void
fore200e_sba_reset(struct fore200e* fore200e)
{
fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
fore200e_spin(10);
fore200e->bus->write(0, fore200e->regs.sba.hcr);
}
static int __init
fore200e_sba_map(struct fore200e* fore200e)
{
struct sbus_dev* sbus_dev = (struct sbus_dev*)fore200e->bus_dev;
unsigned int bursts;
/* gain access to the SBA specific registers */
fore200e->regs.sba.hcr = sbus_ioremap(&sbus_dev->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
fore200e->regs.sba.bsr = sbus_ioremap(&sbus_dev->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
fore200e->regs.sba.isr = sbus_ioremap(&sbus_dev->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
fore200e->virt_base = sbus_ioremap(&sbus_dev->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
if (fore200e->virt_base == NULL) {
printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
return -EFAULT;
}
DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
/* get the supported DVMA burst sizes */
bursts = prom_getintdefault(sbus_dev->bus->prom_node, "burst-sizes", 0x00);
if (sbus_can_dma_64bit(sbus_dev))
sbus_set_sbus64(sbus_dev, bursts);
fore200e->state = FORE200E_STATE_MAP;
return 0;
}
static void
fore200e_sba_unmap(struct fore200e* fore200e)
{
sbus_iounmap(fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
sbus_iounmap(fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
sbus_iounmap(fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
sbus_iounmap(fore200e->virt_base, SBA200E_RAM_LENGTH);
}
static int __init
fore200e_sba_configure(struct fore200e* fore200e)
{
fore200e->state = FORE200E_STATE_CONFIGURE;
return 0;
}
static struct fore200e* __init
fore200e_sba_detect(const struct fore200e_bus* bus, int index)
{
struct fore200e* fore200e;
struct sbus_bus* sbus_bus;
struct sbus_dev* sbus_dev = NULL;
unsigned int count = 0;
for_each_sbus (sbus_bus) {
for_each_sbusdev (sbus_dev, sbus_bus) {
if (strcmp(sbus_dev->prom_name, SBA200E_PROM_NAME) == 0) {
if (count >= index)
goto found;
count++;
}
}
}
return NULL;
found:
if (sbus_dev->num_registers != 4) {
printk(FORE200E "this %s device has %d instead of 4 registers\n",
bus->model_name, sbus_dev->num_registers);
return NULL;
}
fore200e = fore200e_kmalloc(sizeof(struct fore200e), GFP_KERNEL);
if (fore200e == NULL)
return NULL;
fore200e->bus = bus;
fore200e->bus_dev = sbus_dev;
fore200e->irq = sbus_dev->irqs[ 0 ];
fore200e->phys_base = (unsigned long)sbus_dev;
sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
return fore200e;
}
static int __init
fore200e_sba_prom_read(struct fore200e* fore200e, struct prom_data* prom)
{
struct sbus_dev* sbus_dev = (struct sbus_dev*) fore200e->bus_dev;
int len;
len = prom_getproperty(sbus_dev->prom_node, "macaddrlo2", &prom->mac_addr[ 4 ], 4);
if (len < 0)
return -EBUSY;
len = prom_getproperty(sbus_dev->prom_node, "macaddrhi4", &prom->mac_addr[ 2 ], 4);
if (len < 0)
return -EBUSY;
prom_getproperty(sbus_dev->prom_node, "serialnumber",
(char*)&prom->serial_number, sizeof(prom->serial_number));
prom_getproperty(sbus_dev->prom_node, "promversion",
(char*)&prom->hw_revision, sizeof(prom->hw_revision));
return 0;
}
static int
fore200e_sba_proc_read(struct fore200e* fore200e, char *page)
{
struct sbus_dev* sbus_dev = (struct sbus_dev*)fore200e->bus_dev;
return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n", sbus_dev->slot, sbus_dev->prom_name);
}
#endif /* CONFIG_ATM_FORE200E_SBA */
static void
fore200e_tx_irq(struct fore200e* fore200e)
{
struct host_txq* txq = &fore200e->host_txq;
struct host_txq_entry* entry;
struct atm_vcc* vcc;
struct fore200e_vc_map* vc_map;
if (fore200e->host_txq.txing == 0)
return;
for (;;) {
entry = &txq->host_entry[ txq->tail ];
if ((*entry->status & STATUS_COMPLETE) == 0) {
break;
}
DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
entry, txq->tail, entry->vc_map, entry->skb);
/* free copy of misaligned data */
kfree(entry->data);
/* remove DMA mapping */
fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
DMA_TO_DEVICE);
vc_map = entry->vc_map;
/* vcc closed since the time the entry was submitted for tx? */
if ((vc_map->vcc == NULL) ||
(test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
fore200e->atm_dev->number);
dev_kfree_skb_any(entry->skb);
}
else {
ASSERT(vc_map->vcc);
/* vcc closed then immediately re-opened? */
if (vc_map->incarn != entry->incarn) {
/* when a vcc is closed, some PDUs may be still pending in the tx queue.
if the same vcc is immediately re-opened, those pending PDUs must
not be popped after the completion of their emission, as they refer
to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
would be decremented by the size of the (unrelated) skb, possibly
leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
we thus bind the tx entry to the current incarnation of the vcc
when the entry is submitted for tx. When the tx later completes,
if the incarnation number of the tx entry does not match the one
of the vcc, then this implies that the vcc has been closed then re-opened.
we thus just drop the skb here. */
DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
fore200e->atm_dev->number);
dev_kfree_skb_any(entry->skb);
}
else {
vcc = vc_map->vcc;
ASSERT(vcc);
/* notify tx completion */
if (vcc->pop) {
vcc->pop(vcc, entry->skb);
}
else {
dev_kfree_skb_any(entry->skb);
}
#if 1
/* race fixed by the above incarnation mechanism, but... */
if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
}
#endif
/* check error condition */
if (*entry->status & STATUS_ERROR)
atomic_inc(&vcc->stats->tx_err);
else
atomic_inc(&vcc->stats->tx);
}
}
*entry->status = STATUS_FREE;
fore200e->host_txq.txing--;
FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
}
}
#ifdef FORE200E_BSQ_DEBUG
int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
{
struct buffer* buffer;
int count = 0;
buffer = bsq->freebuf;
while (buffer) {
if (buffer->supplied) {
printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
where, scheme, magn, buffer->index);
}
if (buffer->magn != magn) {
printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
where, scheme, magn, buffer->index, buffer->magn);
}
if (buffer->scheme != scheme) {
printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
where, scheme, magn, buffer->index, buffer->scheme);
}
if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
where, scheme, magn, buffer->index);
}
count++;
buffer = buffer->next;
}
if (count != bsq->freebuf_count) {
printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
where, scheme, magn, count, bsq->freebuf_count);
}
return 0;
}
#endif
static void
fore200e_supply(struct fore200e* fore200e)
{
int scheme, magn, i;
struct host_bsq* bsq;
struct host_bsq_entry* entry;
struct buffer* buffer;
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
bsq = &fore200e->host_bsq[ scheme ][ magn ];
#ifdef FORE200E_BSQ_DEBUG
bsq_audit(1, bsq, scheme, magn);
#endif
while (bsq->freebuf_count >= RBD_BLK_SIZE) {
DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
entry = &bsq->host_entry[ bsq->head ];
for (i = 0; i < RBD_BLK_SIZE; i++) {
/* take the first buffer in the free buffer list */
buffer = bsq->freebuf;
if (!buffer) {
printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
scheme, magn, bsq->freebuf_count);
return;
}
bsq->freebuf = buffer->next;
#ifdef FORE200E_BSQ_DEBUG
if (buffer->supplied)
printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
scheme, magn, buffer->index);
buffer->supplied = 1;
#endif
entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
}
FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
/* decrease accordingly the number of free rx buffers */
bsq->freebuf_count -= RBD_BLK_SIZE;
*entry->status = STATUS_PENDING;
fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
}
}
}
}
static int
fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
{
struct sk_buff* skb;
struct buffer* buffer;
struct fore200e_vcc* fore200e_vcc;
int i, pdu_len = 0;
#ifdef FORE200E_52BYTE_AAL0_SDU
u32 cell_header = 0;
#endif
ASSERT(vcc);
fore200e_vcc = FORE200E_VCC(vcc);
ASSERT(fore200e_vcc);
#ifdef FORE200E_52BYTE_AAL0_SDU
if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
(rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
(rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
(rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
rpd->atm_header.clp;
pdu_len = 4;
}
#endif
/* compute total PDU length */
for (i = 0; i < rpd->nseg; i++)
pdu_len += rpd->rsd[ i ].length;
skb = alloc_skb(pdu_len, GFP_ATOMIC);
if (skb == NULL) {
DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
atomic_inc(&vcc->stats->rx_drop);
return -ENOMEM;
}
__net_timestamp(skb);
#ifdef FORE200E_52BYTE_AAL0_SDU
if (cell_header) {
*((u32*)skb_put(skb, 4)) = cell_header;
}
#endif
/* reassemble segments */
for (i = 0; i < rpd->nseg; i++) {
/* rebuild rx buffer address from rsd handle */
buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
/* Make device DMA transfer visible to CPU. */
fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
/* Now let the device get at it again. */
fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
}
DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
if (pdu_len < fore200e_vcc->rx_min_pdu)
fore200e_vcc->rx_min_pdu = pdu_len;
if (pdu_len > fore200e_vcc->rx_max_pdu)
fore200e_vcc->rx_max_pdu = pdu_len;
fore200e_vcc->rx_pdu++;
/* push PDU */
if (atm_charge(vcc, skb->truesize) == 0) {
DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
vcc->itf, vcc->vpi, vcc->vci);
dev_kfree_skb_any(skb);
atomic_inc(&vcc->stats->rx_drop);
return -ENOMEM;
}
ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
vcc->push(vcc, skb);
atomic_inc(&vcc->stats->rx);
ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
return 0;
}
static void
fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
{
struct host_bsq* bsq;
struct buffer* buffer;
int i;
for (i = 0; i < rpd->nseg; i++) {
/* rebuild rx buffer address from rsd handle */
buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
#ifdef FORE200E_BSQ_DEBUG
bsq_audit(2, bsq, buffer->scheme, buffer->magn);
if (buffer->supplied == 0)
printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
buffer->scheme, buffer->magn, buffer->index);
buffer->supplied = 0;
#endif
/* re-insert the buffer into the free buffer list */
buffer->next = bsq->freebuf;
bsq->freebuf = buffer;
/* then increment the number of free rx buffers */
bsq->freebuf_count++;
}
}
static void
fore200e_rx_irq(struct fore200e* fore200e)
{
struct host_rxq* rxq = &fore200e->host_rxq;
struct host_rxq_entry* entry;
struct atm_vcc* vcc;
struct fore200e_vc_map* vc_map;
for (;;) {
entry = &rxq->host_entry[ rxq->head ];
/* no more received PDUs */
if ((*entry->status & STATUS_COMPLETE) == 0)
break;
vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
if ((vc_map->vcc == NULL) ||
(test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
fore200e->atm_dev->number,
entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
}
else {
vcc = vc_map->vcc;
ASSERT(vcc);
if ((*entry->status & STATUS_ERROR) == 0) {
fore200e_push_rpd(fore200e, vcc, entry->rpd);
}
else {
DPRINTK(2, "damaged PDU on %d.%d.%d\n",
fore200e->atm_dev->number,
entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
atomic_inc(&vcc->stats->rx_err);
}
}
FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
fore200e_collect_rpd(fore200e, entry->rpd);
/* rewrite the rpd address to ack the received PDU */
fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
*entry->status = STATUS_FREE;
fore200e_supply(fore200e);
}
}
#ifndef FORE200E_USE_TASKLET
static void
fore200e_irq(struct fore200e* fore200e)
{
unsigned long flags;
spin_lock_irqsave(&fore200e->q_lock, flags);
fore200e_rx_irq(fore200e);
spin_unlock_irqrestore(&fore200e->q_lock, flags);
spin_lock_irqsave(&fore200e->q_lock, flags);
fore200e_tx_irq(fore200e);
spin_unlock_irqrestore(&fore200e->q_lock, flags);
}
#endif
static irqreturn_t
fore200e_interrupt(int irq, void* dev, struct pt_regs* regs)
{
struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
if (fore200e->bus->irq_check(fore200e) == 0) {
DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
return IRQ_NONE;
}
DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
#ifdef FORE200E_USE_TASKLET
tasklet_schedule(&fore200e->tx_tasklet);
tasklet_schedule(&fore200e->rx_tasklet);
#else
fore200e_irq(fore200e);
#endif
fore200e->bus->irq_ack(fore200e);
return IRQ_HANDLED;
}
#ifdef FORE200E_USE_TASKLET
static void
fore200e_tx_tasklet(unsigned long data)
{
struct fore200e* fore200e = (struct fore200e*) data;
unsigned long flags;
DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
spin_lock_irqsave(&fore200e->q_lock, flags);
fore200e_tx_irq(fore200e);
spin_unlock_irqrestore(&fore200e->q_lock, flags);
}
static void
fore200e_rx_tasklet(unsigned long data)
{
struct fore200e* fore200e = (struct fore200e*) data;
unsigned long flags;
DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
spin_lock_irqsave(&fore200e->q_lock, flags);
fore200e_rx_irq((struct fore200e*) data);
spin_unlock_irqrestore(&fore200e->q_lock, flags);
}
#endif
static int
fore200e_select_scheme(struct atm_vcc* vcc)
{
/* fairly balance the VCs over (identical) buffer schemes */
int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
vcc->itf, vcc->vpi, vcc->vci, scheme);
return scheme;
}
static int
fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
{
struct host_cmdq* cmdq = &fore200e->host_cmdq;
struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
struct activate_opcode activ_opcode;
struct deactivate_opcode deactiv_opcode;
struct vpvc vpvc;
int ok;
enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
if (activate) {
FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
activ_opcode.aal = aal;
activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
activ_opcode.pad = 0;
}
else {
deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
deactiv_opcode.pad = 0;
}
vpvc.vci = vcc->vci;
vpvc.vpi = vcc->vpi;
*entry->status = STATUS_PENDING;
if (activate) {
#ifdef FORE200E_52BYTE_AAL0_SDU
mtu = 48;
#endif
/* the MTU is not used by the cp, except in the case of AAL0 */
fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
}
else {
fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
}
ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
*entry->status = STATUS_FREE;
if (ok == 0) {
printk(FORE200E "unable to %s VC %d.%d.%d\n",
activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
return -EIO;
}
DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
activate ? "open" : "clos");
return 0;
}
#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
static void
fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
{
if (qos->txtp.max_pcr < ATM_OC3_PCR) {
/* compute the data cells to idle cells ratio from the tx PCR */
rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
}
else {
/* disable rate control */
rate->data_cells = rate->idle_cells = 0;
}
}
static int
fore200e_open(struct atm_vcc *vcc)
{
struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
struct fore200e_vcc* fore200e_vcc;
struct fore200e_vc_map* vc_map;
unsigned long flags;
int vci = vcc->vci;
short vpi = vcc->vpi;
ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
spin_lock_irqsave(&fore200e->q_lock, flags);
vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
if (vc_map->vcc) {
spin_unlock_irqrestore(&fore200e->q_lock, flags);
printk(FORE200E "VC %d.%d.%d already in use\n",
fore200e->atm_dev->number, vpi, vci);
return -EINVAL;
}
vc_map->vcc = vcc;
spin_unlock_irqrestore(&fore200e->q_lock, flags);
fore200e_vcc = fore200e_kmalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
if (fore200e_vcc == NULL) {
vc_map->vcc = NULL;
return -ENOMEM;
}
DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
"rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
/* pseudo-CBR bandwidth requested? */
if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
down(&fore200e->rate_sf);
if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
up(&fore200e->rate_sf);
fore200e_kfree(fore200e_vcc);
vc_map->vcc = NULL;
return -EAGAIN;
}
/* reserve bandwidth */
fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
up(&fore200e->rate_sf);
}
vcc->itf = vcc->dev->number;
set_bit(ATM_VF_PARTIAL,&vcc->flags);
set_bit(ATM_VF_ADDR, &vcc->flags);
vcc->dev_data = fore200e_vcc;
if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
vc_map->vcc = NULL;
clear_bit(ATM_VF_ADDR, &vcc->flags);
clear_bit(ATM_VF_PARTIAL,&vcc->flags);
vcc->dev_data = NULL;
fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
fore200e_kfree(fore200e_vcc);
return -EINVAL;
}
/* compute rate control parameters */
if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
set_bit(ATM_VF_HASQOS, &vcc->flags);
DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
}
fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
/* new incarnation of the vcc */
vc_map->incarn = ++fore200e->incarn_count;
/* VC unusable before this flag is set */
set_bit(ATM_VF_READY, &vcc->flags);
return 0;
}
static void
fore200e_close(struct atm_vcc* vcc)
{
struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
struct fore200e_vcc* fore200e_vcc;
struct fore200e_vc_map* vc_map;
unsigned long flags;
ASSERT(vcc);
ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
clear_bit(ATM_VF_READY, &vcc->flags);
fore200e_activate_vcin(fore200e, 0, vcc, 0);
spin_lock_irqsave(&fore200e->q_lock, flags);
vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
/* the vc is no longer considered as "in use" by fore200e_open() */
vc_map->vcc = NULL;
vcc->itf = vcc->vci = vcc->vpi = 0;
fore200e_vcc = FORE200E_VCC(vcc);
vcc->dev_data = NULL;
spin_unlock_irqrestore(&fore200e->q_lock, flags);
/* release reserved bandwidth, if any */
if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
down(&fore200e->rate_sf);
fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
up(&fore200e->rate_sf);
clear_bit(ATM_VF_HASQOS, &vcc->flags);
}
clear_bit(ATM_VF_ADDR, &vcc->flags);
clear_bit(ATM_VF_PARTIAL,&vcc->flags);
ASSERT(fore200e_vcc);
fore200e_kfree(fore200e_vcc);
}
static int
fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
{
struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
struct fore200e_vc_map* vc_map;
struct host_txq* txq = &fore200e->host_txq;
struct host_txq_entry* entry;
struct tpd* tpd;
struct tpd_haddr tpd_haddr;
int retry = CONFIG_ATM_FORE200E_TX_RETRY;
int tx_copy = 0;
int tx_len = skb->len;
u32* cell_header = NULL;
unsigned char* skb_data;
int skb_len;
unsigned char* data;
unsigned long flags;
ASSERT(vcc);
ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
ASSERT(fore200e);
ASSERT(fore200e_vcc);
if (!test_bit(ATM_VF_READY, &vcc->flags)) {
DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
dev_kfree_skb_any(skb);
return -EINVAL;
}
#ifdef FORE200E_52BYTE_AAL0_SDU
if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
cell_header = (u32*) skb->data;
skb_data = skb->data + 4; /* skip 4-byte cell header */
skb_len = tx_len = skb->len - 4;
DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
}
else
#endif
{
skb_data = skb->data;
skb_len = skb->len;
}
if (((unsigned long)skb_data) & 0x3) {
DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
tx_copy = 1;
tx_len = skb_len;
}
if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
/* this simply NUKES the PCA board */
DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
tx_copy = 1;
tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
}
if (tx_copy) {
data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
if (data == NULL) {
if (vcc->pop) {
vcc->pop(vcc, skb);
}
else {
dev_kfree_skb_any(skb);
}
return -ENOMEM;
}
memcpy(data, skb_data, skb_len);
if (skb_len < tx_len)
memset(data + skb_len, 0x00, tx_len - skb_len);
}
else {
data = skb_data;
}
vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
ASSERT(vc_map->vcc == vcc);
retry_here:
spin_lock_irqsave(&fore200e->q_lock, flags);
entry = &txq->host_entry[ txq->head ];
if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
/* try to free completed tx queue entries */
fore200e_tx_irq(fore200e);
if (*entry->status != STATUS_FREE) {
spin_unlock_irqrestore(&fore200e->q_lock, flags);
/* retry once again? */
if (--retry > 0) {
udelay(50);
goto retry_here;
}
atomic_inc(&vcc->stats->tx_err);
fore200e->tx_sat++;
DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
fore200e->name, fore200e->cp_queues->heartbeat);
if (vcc->pop) {
vcc->pop(vcc, skb);
}
else {
dev_kfree_skb_any(skb);
}
if (tx_copy)
kfree(data);
return -ENOBUFS;
}
}
entry->incarn = vc_map->incarn;
entry->vc_map = vc_map;
entry->skb = skb;
entry->data = tx_copy ? data : NULL;
tpd = entry->tpd;
tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
tpd->tsd[ 0 ].length = tx_len;
FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
txq->txing++;
/* The dma_map call above implies a dma_sync so the device can use it,
* thus no explicit dma_sync call is necessary here.
*/
DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
tpd->tsd[0].length, skb_len);
if (skb_len < fore200e_vcc->tx_min_pdu)
fore200e_vcc->tx_min_pdu = skb_len;
if (skb_len > fore200e_vcc->tx_max_pdu)
fore200e_vcc->tx_max_pdu = skb_len;
fore200e_vcc->tx_pdu++;
/* set tx rate control information */
tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
if (cell_header) {
tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
}
else {
/* set the ATM header, common to all cells conveying the PDU */
tpd->atm_header.clp = 0;
tpd->atm_header.plt = 0;
tpd->atm_header.vci = vcc->vci;
tpd->atm_header.vpi = vcc->vpi;
tpd->atm_header.gfc = 0;
}
tpd->spec.length = tx_len;
tpd->spec.nseg = 1;
tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
tpd->spec.intr = 1;
tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
tpd_haddr.pad = 0;
tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
*entry->status = STATUS_PENDING;
fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
spin_unlock_irqrestore(&fore200e->q_lock, flags);
return 0;
}
static int
fore200e_getstats(struct fore200e* fore200e)
{
struct host_cmdq* cmdq = &fore200e->host_cmdq;
struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
struct stats_opcode opcode;
int ok;
u32 stats_dma_addr;
if (fore200e->stats == NULL) {
fore200e->stats = fore200e_kmalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
if (fore200e->stats == NULL)
return -ENOMEM;
}
stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
sizeof(struct stats), DMA_FROM_DEVICE);
FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
opcode.opcode = OPCODE_GET_STATS;
opcode.pad = 0;
fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
*entry->status = STATUS_PENDING;
fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
*entry->status = STATUS_FREE;
fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
if (ok == 0) {
printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
return -EIO;
}
return 0;
}
static int
fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
{
/* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
return -EINVAL;
}
static int
fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
{
/* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
return -EINVAL;
}
#if 0 /* currently unused */
static int
fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
{
struct host_cmdq* cmdq = &fore200e->host_cmdq;
struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
struct oc3_opcode opcode;
int ok;
u32 oc3_regs_dma_addr;
oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
opcode.opcode = OPCODE_GET_OC3;
opcode.reg = 0;
opcode.value = 0;
opcode.mask = 0;
fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
*entry->status = STATUS_PENDING;
fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
*entry->status = STATUS_FREE;
fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
if (ok == 0) {
printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
return -EIO;
}
return 0;
}
#endif
static int
fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
{
struct host_cmdq* cmdq = &fore200e->host_cmdq;
struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
struct oc3_opcode opcode;
int ok;
DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
opcode.opcode = OPCODE_SET_OC3;
opcode.reg = reg;
opcode.value = value;
opcode.mask = mask;
fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
*entry->status = STATUS_PENDING;
fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
*entry->status = STATUS_FREE;
if (ok == 0) {
printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
return -EIO;
}
return 0;
}
static int
fore200e_setloop(struct fore200e* fore200e, int loop_mode)
{
u32 mct_value, mct_mask;
int error;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
switch (loop_mode) {
case ATM_LM_NONE:
mct_value = 0;
mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
break;
case ATM_LM_LOC_PHY:
mct_value = mct_mask = SUNI_MCT_DLE;
break;
case ATM_LM_RMT_PHY:
mct_value = mct_mask = SUNI_MCT_LLE;
break;
default:
return -EINVAL;
}
error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
if (error == 0)
fore200e->loop_mode = loop_mode;
return error;
}
static inline unsigned int
fore200e_swap(unsigned int in)
{
#if defined(__LITTLE_ENDIAN)
return swab32(in);
#else
return in;
#endif
}
static int
fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
{
struct sonet_stats tmp;
if (fore200e_getstats(fore200e) < 0)
return -EIO;
tmp.section_bip = fore200e_swap(fore200e->stats->oc3.section_bip8_errors);
tmp.line_bip = fore200e_swap(fore200e->stats->oc3.line_bip24_errors);
tmp.path_bip = fore200e_swap(fore200e->stats->oc3.path_bip8_errors);
tmp.line_febe = fore200e_swap(fore200e->stats->oc3.line_febe_errors);
tmp.path_febe = fore200e_swap(fore200e->stats->oc3.path_febe_errors);
tmp.corr_hcs = fore200e_swap(fore200e->stats->oc3.corr_hcs_errors);
tmp.uncorr_hcs = fore200e_swap(fore200e->stats->oc3.ucorr_hcs_errors);
tmp.tx_cells = fore200e_swap(fore200e->stats->aal0.cells_transmitted) +
fore200e_swap(fore200e->stats->aal34.cells_transmitted) +
fore200e_swap(fore200e->stats->aal5.cells_transmitted);
tmp.rx_cells = fore200e_swap(fore200e->stats->aal0.cells_received) +
fore200e_swap(fore200e->stats->aal34.cells_received) +
fore200e_swap(fore200e->stats->aal5.cells_received);
if (arg)
return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
return 0;
}
static int
fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
{
struct fore200e* fore200e = FORE200E_DEV(dev);
DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
switch (cmd) {
case SONET_GETSTAT:
return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
case SONET_GETDIAG:
return put_user(0, (int __user *)arg) ? -EFAULT : 0;
case ATM_SETLOOP:
return fore200e_setloop(fore200e, (int)(unsigned long)arg);
case ATM_GETLOOP:
return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
case ATM_QUERYLOOP:
return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
}
return -ENOSYS; /* not implemented */
}
static int
fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
{
struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
if (!test_bit(ATM_VF_READY, &vcc->flags)) {
DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
return -EINVAL;
}
DPRINTK(2, "change_qos %d.%d.%d, "
"(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
"rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
"available_cell_rate = %u",
vcc->itf, vcc->vpi, vcc->vci,
fore200e_traffic_class[ qos->txtp.traffic_class ],
qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
fore200e_traffic_class[ qos->rxtp.traffic_class ],
qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
flags, fore200e->available_cell_rate);
if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
down(&fore200e->rate_sf);
if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
up(&fore200e->rate_sf);
return -EAGAIN;
}
fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
fore200e->available_cell_rate -= qos->txtp.max_pcr;
up(&fore200e->rate_sf);
memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
/* update rate control parameters */
fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
set_bit(ATM_VF_HASQOS, &vcc->flags);
return 0;
}
return -EINVAL;
}
static int __init
fore200e_irq_request(struct fore200e* fore200e)
{
if (request_irq(fore200e->irq, fore200e_interrupt, SA_SHIRQ, fore200e->name, fore200e->atm_dev) < 0) {
printk(FORE200E "unable to reserve IRQ %s for device %s\n",
fore200e_irq_itoa(fore200e->irq), fore200e->name);
return -EBUSY;
}
printk(FORE200E "IRQ %s reserved for device %s\n",
fore200e_irq_itoa(fore200e->irq), fore200e->name);
#ifdef FORE200E_USE_TASKLET
tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
#endif
fore200e->state = FORE200E_STATE_IRQ;
return 0;
}
static int __init
fore200e_get_esi(struct fore200e* fore200e)
{
struct prom_data* prom = fore200e_kmalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
int ok, i;
if (!prom)
return -ENOMEM;
ok = fore200e->bus->prom_read(fore200e, prom);
if (ok < 0) {
fore200e_kfree(prom);
return -EBUSY;
}
printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %02x:%02x:%02x:%02x:%02x:%02x\n",
fore200e->name,
(prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
prom->serial_number & 0xFFFF,
prom->mac_addr[ 2 ], prom->mac_addr[ 3 ], prom->mac_addr[ 4 ],
prom->mac_addr[ 5 ], prom->mac_addr[ 6 ], prom->mac_addr[ 7 ]);
for (i = 0; i < ESI_LEN; i++) {
fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
}
fore200e_kfree(prom);
return 0;
}
static int __init
fore200e_alloc_rx_buf(struct fore200e* fore200e)
{
int scheme, magn, nbr, size, i;
struct host_bsq* bsq;
struct buffer* buffer;
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
bsq = &fore200e->host_bsq[ scheme ][ magn ];
nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
size = fore200e_rx_buf_size[ scheme ][ magn ];
DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
/* allocate the array of receive buffers */
buffer = bsq->buffer = fore200e_kmalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
if (buffer == NULL)
return -ENOMEM;
bsq->freebuf = NULL;
for (i = 0; i < nbr; i++) {
buffer[ i ].scheme = scheme;
buffer[ i ].magn = magn;
#ifdef FORE200E_BSQ_DEBUG
buffer[ i ].index = i;
buffer[ i ].supplied = 0;
#endif
/* allocate the receive buffer body */
if (fore200e_chunk_alloc(fore200e,
&buffer[ i ].data, size, fore200e->bus->buffer_alignment,
DMA_FROM_DEVICE) < 0) {
while (i > 0)
fore200e_chunk_free(fore200e, &buffer[ --i ].data);
fore200e_kfree(buffer);
return -ENOMEM;
}
/* insert the buffer into the free buffer list */
buffer[ i ].next = bsq->freebuf;
bsq->freebuf = &buffer[ i ];
}
/* all the buffers are free, initially */
bsq->freebuf_count = nbr;
#ifdef FORE200E_BSQ_DEBUG
bsq_audit(3, bsq, scheme, magn);
#endif
}
}
fore200e->state = FORE200E_STATE_ALLOC_BUF;
return 0;
}
static int __init
fore200e_init_bs_queue(struct fore200e* fore200e)
{
int scheme, magn, i;
struct host_bsq* bsq;
struct cp_bsq_entry __iomem * cp_entry;
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
bsq = &fore200e->host_bsq[ scheme ][ magn ];
/* allocate and align the array of status words */
if (fore200e->bus->dma_chunk_alloc(fore200e,
&bsq->status,
sizeof(enum status),
QUEUE_SIZE_BS,
fore200e->bus->status_alignment) < 0) {
return -ENOMEM;
}
/* allocate and align the array of receive buffer descriptors */
if (fore200e->bus->dma_chunk_alloc(fore200e,
&bsq->rbd_block,
sizeof(struct rbd_block),
QUEUE_SIZE_BS,
fore200e->bus->descr_alignment) < 0) {
fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
return -ENOMEM;
}
/* get the base address of the cp resident buffer supply queue entries */
cp_entry = fore200e->virt_base +
fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
/* fill the host resident and cp resident buffer supply queue entries */
for (i = 0; i < QUEUE_SIZE_BS; i++) {
bsq->host_entry[ i ].status =
FORE200E_INDEX(bsq->status.align_addr, enum status, i);
bsq->host_entry[ i ].rbd_block =
FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
bsq->host_entry[ i ].rbd_block_dma =
FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
*bsq->host_entry[ i ].status = STATUS_FREE;
fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
&cp_entry[ i ].status_haddr);
}
}
}
fore200e->state = FORE200E_STATE_INIT_BSQ;
return 0;
}
static int __init
fore200e_init_rx_queue(struct fore200e* fore200e)
{
struct host_rxq* rxq = &fore200e->host_rxq;
struct cp_rxq_entry __iomem * cp_entry;
int i;
DPRINTK(2, "receive queue is being initialized\n");
/* allocate and align the array of status words */
if (fore200e->bus->dma_chunk_alloc(fore200e,
&rxq->status,
sizeof(enum status),
QUEUE_SIZE_RX,
fore200e->bus->status_alignment) < 0) {
return -ENOMEM;
}
/* allocate and align the array of receive PDU descriptors */
if (fore200e->bus->dma_chunk_alloc(fore200e,
&rxq->rpd,
sizeof(struct rpd),
QUEUE_SIZE_RX,
fore200e->bus->descr_alignment) < 0) {
fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
return -ENOMEM;
}
/* get the base address of the cp resident rx queue entries */
cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
/* fill the host resident and cp resident rx entries */
for (i=0; i < QUEUE_SIZE_RX; i++) {
rxq->host_entry[ i ].status =
FORE200E_INDEX(rxq->status.align_addr, enum status, i);
rxq->host_entry[ i ].rpd =
FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
rxq->host_entry[ i ].rpd_dma =
FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
*rxq->host_entry[ i ].status = STATUS_FREE;
fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
&cp_entry[ i ].status_haddr);
fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
&cp_entry[ i ].rpd_haddr);
}
/* set the head entry of the queue */
rxq->head = 0;
fore200e->state = FORE200E_STATE_INIT_RXQ;
return 0;
}
static int __init
fore200e_init_tx_queue(struct fore200e* fore200e)
{
struct host_txq* txq = &fore200e->host_txq;
struct cp_txq_entry __iomem * cp_entry;
int i;
DPRINTK(2, "transmit queue is being initialized\n");
/* allocate and align the array of status words */
if (fore200e->bus->dma_chunk_alloc(fore200e,
&txq->status,
sizeof(enum status),
QUEUE_SIZE_TX,
fore200e->bus->status_alignment) < 0) {
return -ENOMEM;
}
/* allocate and align the array of transmit PDU descriptors */
if (fore200e->bus->dma_chunk_alloc(fore200e,
&txq->tpd,
sizeof(struct tpd),
QUEUE_SIZE_TX,
fore200e->bus->descr_alignment) < 0) {
fore200e->bus->dma_chunk_free(fore200e, &txq->status);
return -ENOMEM;
}
/* get the base address of the cp resident tx queue entries */
cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
/* fill the host resident and cp resident tx entries */
for (i=0; i < QUEUE_SIZE_TX; i++) {
txq->host_entry[ i ].status =
FORE200E_INDEX(txq->status.align_addr, enum status, i);
txq->host_entry[ i ].tpd =
FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
txq->host_entry[ i ].tpd_dma =
FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
*txq->host_entry[ i ].status = STATUS_FREE;
fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
&cp_entry[ i ].status_haddr);
/* although there is a one-to-one mapping of tx queue entries and tpds,
we do not write here the DMA (physical) base address of each tpd into
the related cp resident entry, because the cp relies on this write
operation to detect that a new pdu has been submitted for tx */
}
/* set the head and tail entries of the queue */
txq->head = 0;
txq->tail = 0;
fore200e->state = FORE200E_STATE_INIT_TXQ;
return 0;
}
static int __init
fore200e_init_cmd_queue(struct fore200e* fore200e)
{
struct host_cmdq* cmdq = &fore200e->host_cmdq;
struct cp_cmdq_entry __iomem * cp_entry;
int i;
DPRINTK(2, "command queue is being initialized\n");
/* allocate and align the array of status words */
if (fore200e->bus->dma_chunk_alloc(fore200e,
&cmdq->status,
sizeof(enum status),
QUEUE_SIZE_CMD,
fore200e->bus->status_alignment) < 0) {
return -ENOMEM;
}
/* get the base address of the cp resident cmd queue entries */
cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
/* fill the host resident and cp resident cmd entries */
for (i=0; i < QUEUE_SIZE_CMD; i++) {
cmdq->host_entry[ i ].status =
FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
*cmdq->host_entry[ i ].status = STATUS_FREE;
fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
&cp_entry[ i ].status_haddr);
}
/* set the head entry of the queue */
cmdq->head = 0;
fore200e->state = FORE200E_STATE_INIT_CMDQ;
return 0;
}
static void __init
fore200e_param_bs_queue(struct fore200e* fore200e,
enum buffer_scheme scheme, enum buffer_magn magn,
int queue_length, int pool_size, int supply_blksize)
{
struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
fore200e->bus->write(queue_length, &bs_spec->queue_length);
fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
fore200e->bus->write(pool_size, &bs_spec->pool_size);
fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
}
static int __init
fore200e_initialize(struct fore200e* fore200e)
{
struct cp_queues __iomem * cpq;
int ok, scheme, magn;
DPRINTK(2, "device %s being initialized\n", fore200e->name);
init_MUTEX(&fore200e->rate_sf);
spin_lock_init(&fore200e->q_lock);
cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
/* enable cp to host interrupts */
fore200e->bus->write(1, &cpq->imask);
if (fore200e->bus->irq_enable)
fore200e->bus->irq_enable(fore200e);
fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
fore200e_param_bs_queue(fore200e, scheme, magn,
QUEUE_SIZE_BS,
fore200e_rx_buf_nbr[ scheme ][ magn ],
RBD_BLK_SIZE);
/* issue the initialize command */
fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
if (ok == 0) {
printk(FORE200E "device %s initialization failed\n", fore200e->name);
return -ENODEV;
}
printk(FORE200E "device %s initialized\n", fore200e->name);
fore200e->state = FORE200E_STATE_INITIALIZE;
return 0;
}
static void __init
fore200e_monitor_putc(struct fore200e* fore200e, char c)
{
struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
#if 0
printk("%c", c);
#endif
fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
}
static int __init
fore200e_monitor_getc(struct fore200e* fore200e)
{
struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
unsigned long timeout = jiffies + msecs_to_jiffies(50);
int c;
while (time_before(jiffies, timeout)) {
c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
#if 0
printk("%c", c & 0xFF);
#endif
return c & 0xFF;
}
}
return -1;
}
static void __init
fore200e_monitor_puts(struct fore200e* fore200e, char* str)
{
while (*str) {
/* the i960 monitor doesn't accept any new character if it has something to say */
while (fore200e_monitor_getc(fore200e) >= 0);
fore200e_monitor_putc(fore200e, *str++);
}
while (fore200e_monitor_getc(fore200e) >= 0);
}
static int __init
fore200e_start_fw(struct fore200e* fore200e)
{
int ok;
char cmd[ 48 ];
struct fw_header* fw_header = (struct fw_header*) fore200e->bus->fw_data;
DPRINTK(2, "device %s firmware being started\n", fore200e->name);
#if defined(__sparc_v9__)
/* reported to be required by SBA cards on some sparc64 hosts */
fore200e_spin(100);
#endif
sprintf(cmd, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
fore200e_monitor_puts(fore200e, cmd);
ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000);
if (ok == 0) {
printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
return -ENODEV;
}
printk(FORE200E "device %s firmware started\n", fore200e->name);
fore200e->state = FORE200E_STATE_START_FW;
return 0;
}
static int __init
fore200e_load_fw(struct fore200e* fore200e)
{
u32* fw_data = (u32*) fore200e->bus->fw_data;
u32 fw_size = (u32) *fore200e->bus->fw_size / sizeof(u32);
struct fw_header* fw_header = (struct fw_header*) fw_data;
u32 __iomem *load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
fore200e->name, load_addr, fw_size);
if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
return -ENODEV;
}
for (; fw_size--; fw_data++, load_addr++)
fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
fore200e->state = FORE200E_STATE_LOAD_FW;
return 0;
}
static int __init
fore200e_register(struct fore200e* fore200e)
{
struct atm_dev* atm_dev;
DPRINTK(2, "device %s being registered\n", fore200e->name);
atm_dev = atm_dev_register(fore200e->bus->proc_name, &fore200e_ops, -1,
NULL);
if (atm_dev == NULL) {
printk(FORE200E "unable to register device %s\n", fore200e->name);
return -ENODEV;
}
atm_dev->dev_data = fore200e;
fore200e->atm_dev = atm_dev;
atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
fore200e->available_cell_rate = ATM_OC3_PCR;
fore200e->state = FORE200E_STATE_REGISTER;
return 0;
}
static int __init
fore200e_init(struct fore200e* fore200e)
{
if (fore200e_register(fore200e) < 0)
return -ENODEV;
if (fore200e->bus->configure(fore200e) < 0)
return -ENODEV;
if (fore200e->bus->map(fore200e) < 0)
return -ENODEV;
if (fore200e_reset(fore200e, 1) < 0)
return -ENODEV;
if (fore200e_load_fw(fore200e) < 0)
return -ENODEV;
if (fore200e_start_fw(fore200e) < 0)
return -ENODEV;
if (fore200e_initialize(fore200e) < 0)
return -ENODEV;
if (fore200e_init_cmd_queue(fore200e) < 0)
return -ENOMEM;
if (fore200e_init_tx_queue(fore200e) < 0)
return -ENOMEM;
if (fore200e_init_rx_queue(fore200e) < 0)
return -ENOMEM;
if (fore200e_init_bs_queue(fore200e) < 0)
return -ENOMEM;
if (fore200e_alloc_rx_buf(fore200e) < 0)
return -ENOMEM;
if (fore200e_get_esi(fore200e) < 0)
return -EIO;
if (fore200e_irq_request(fore200e) < 0)
return -EBUSY;
fore200e_supply(fore200e);
/* all done, board initialization is now complete */
fore200e->state = FORE200E_STATE_COMPLETE;
return 0;
}
static int __devinit
fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
{
const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
struct fore200e* fore200e;
int err = 0;
static int index = 0;
if (pci_enable_device(pci_dev)) {
err = -EINVAL;
goto out;
}
fore200e = fore200e_kmalloc(sizeof(struct fore200e), GFP_KERNEL);
if (fore200e == NULL) {
err = -ENOMEM;
goto out_disable;
}
fore200e->bus = bus;
fore200e->bus_dev = pci_dev;
fore200e->irq = pci_dev->irq;
fore200e->phys_base = pci_resource_start(pci_dev, 0);
sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
pci_set_master(pci_dev);
printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
fore200e->bus->model_name,
fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
sprintf(fore200e->name, "%s-%d", bus->model_name, index);
err = fore200e_init(fore200e);
if (err < 0) {
fore200e_shutdown(fore200e);
goto out_free;
}
++index;
pci_set_drvdata(pci_dev, fore200e);
out:
return err;
out_free:
kfree(fore200e);
out_disable:
pci_disable_device(pci_dev);
goto out;
}
static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
{
struct fore200e *fore200e;
fore200e = pci_get_drvdata(pci_dev);
fore200e_shutdown(fore200e);
kfree(fore200e);
pci_disable_device(pci_dev);
}
#ifdef CONFIG_ATM_FORE200E_PCA
static struct pci_device_id fore200e_pca_tbl[] = {
{ PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
0, 0, (unsigned long) &fore200e_bus[0] },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
static struct pci_driver fore200e_pca_driver = {
.name = "fore_200e",
.probe = fore200e_pca_detect,
.remove = __devexit_p(fore200e_pca_remove_one),
.id_table = fore200e_pca_tbl,
};
#endif
static int __init
fore200e_module_init(void)
{
const struct fore200e_bus* bus;
struct fore200e* fore200e;
int index;
printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
/* for each configured bus interface */
for (bus = fore200e_bus; bus->model_name; bus++) {
/* detect all boards present on that bus */
for (index = 0; bus->detect && (fore200e = bus->detect(bus, index)); index++) {
printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
fore200e->bus->model_name,
fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
sprintf(fore200e->name, "%s-%d", bus->model_name, index);
if (fore200e_init(fore200e) < 0) {
fore200e_shutdown(fore200e);
break;
}
list_add(&fore200e->entry, &fore200e_boards);
}
}
#ifdef CONFIG_ATM_FORE200E_PCA
if (!pci_register_driver(&fore200e_pca_driver))
return 0;
#endif
if (!list_empty(&fore200e_boards))
return 0;
return -ENODEV;
}
static void __exit
fore200e_module_cleanup(void)
{
struct fore200e *fore200e, *next;
#ifdef CONFIG_ATM_FORE200E_PCA
pci_unregister_driver(&fore200e_pca_driver);
#endif
list_for_each_entry_safe(fore200e, next, &fore200e_boards, entry) {
fore200e_shutdown(fore200e);
kfree(fore200e);
}
DPRINTK(1, "module being removed\n");
}
static int
fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
{
struct fore200e* fore200e = FORE200E_DEV(dev);
struct fore200e_vcc* fore200e_vcc;
struct atm_vcc* vcc;
int i, len, left = *pos;
unsigned long flags;
if (!left--) {
if (fore200e_getstats(fore200e) < 0)
return -EIO;
len = sprintf(page,"\n"
" device:\n"
" internal name:\t\t%s\n", fore200e->name);
/* print bus-specific information */
if (fore200e->bus->proc_read)
len += fore200e->bus->proc_read(fore200e, page + len);
len += sprintf(page + len,
" interrupt line:\t\t%s\n"
" physical base address:\t0x%p\n"
" virtual base address:\t0x%p\n"
" factory address (ESI):\t%02x:%02x:%02x:%02x:%02x:%02x\n"
" board serial number:\t\t%d\n\n",
fore200e_irq_itoa(fore200e->irq),
(void*)fore200e->phys_base,
fore200e->virt_base,
fore200e->esi[0], fore200e->esi[1], fore200e->esi[2],
fore200e->esi[3], fore200e->esi[4], fore200e->esi[5],
fore200e->esi[4] * 256 + fore200e->esi[5]);
return len;
}
if (!left--)
return sprintf(page,
" free small bufs, scheme 1:\t%d\n"
" free large bufs, scheme 1:\t%d\n"
" free small bufs, scheme 2:\t%d\n"
" free large bufs, scheme 2:\t%d\n",
fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
if (!left--) {
u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
len = sprintf(page,"\n\n"
" cell processor:\n"
" heartbeat state:\t\t");
if (hb >> 16 != 0xDEAD)
len += sprintf(page + len, "0x%08x\n", hb);
else
len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
return len;
}
if (!left--) {
static const char* media_name[] = {
"unshielded twisted pair",
"multimode optical fiber ST",
"multimode optical fiber SC",
"single-mode optical fiber ST",
"single-mode optical fiber SC",
"unknown"
};
static const char* oc3_mode[] = {
"normal operation",
"diagnostic loopback",
"line loopback",
"unknown"
};
u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
u32 oc3_index;
if ((media_index < 0) || (media_index > 4))
media_index = 5;
switch (fore200e->loop_mode) {
case ATM_LM_NONE: oc3_index = 0;
break;
case ATM_LM_LOC_PHY: oc3_index = 1;
break;
case ATM_LM_RMT_PHY: oc3_index = 2;
break;
default: oc3_index = 3;
}
return sprintf(page,
" firmware release:\t\t%d.%d.%d\n"
" monitor release:\t\t%d.%d\n"
" media type:\t\t\t%s\n"
" OC-3 revision:\t\t0x%x\n"
" OC-3 mode:\t\t\t%s",
fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
mon960_release >> 16, mon960_release << 16 >> 16,
media_name[ media_index ],
oc3_revision,
oc3_mode[ oc3_index ]);
}
if (!left--) {
struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
return sprintf(page,
"\n\n"
" monitor:\n"
" version number:\t\t%d\n"
" boot status word:\t\t0x%08x\n",
fore200e->bus->read(&cp_monitor->mon_version),
fore200e->bus->read(&cp_monitor->bstat));
}
if (!left--)
return sprintf(page,
"\n"
" device statistics:\n"
" 4b5b:\n"
" crc_header_errors:\t\t%10u\n"
" framing_errors:\t\t%10u\n",
fore200e_swap(fore200e->stats->phy.crc_header_errors),
fore200e_swap(fore200e->stats->phy.framing_errors));
if (!left--)
return sprintf(page, "\n"
" OC-3:\n"
" section_bip8_errors:\t%10u\n"
" path_bip8_errors:\t\t%10u\n"
" line_bip24_errors:\t\t%10u\n"
" line_febe_errors:\t\t%10u\n"
" path_febe_errors:\t\t%10u\n"
" corr_hcs_errors:\t\t%10u\n"
" ucorr_hcs_errors:\t\t%10u\n",
fore200e_swap(fore200e->stats->oc3.section_bip8_errors),
fore200e_swap(fore200e->stats->oc3.path_bip8_errors),
fore200e_swap(fore200e->stats->oc3.line_bip24_errors),
fore200e_swap(fore200e->stats->oc3.line_febe_errors),
fore200e_swap(fore200e->stats->oc3.path_febe_errors),
fore200e_swap(fore200e->stats->oc3.corr_hcs_errors),
fore200e_swap(fore200e->stats->oc3.ucorr_hcs_errors));
if (!left--)
return sprintf(page,"\n"
" ATM:\t\t\t\t cells\n"
" TX:\t\t\t%10u\n"
" RX:\t\t\t%10u\n"
" vpi out of range:\t\t%10u\n"
" vpi no conn:\t\t%10u\n"
" vci out of range:\t\t%10u\n"
" vci no conn:\t\t%10u\n",
fore200e_swap(fore200e->stats->atm.cells_transmitted),
fore200e_swap(fore200e->stats->atm.cells_received),
fore200e_swap(fore200e->stats->atm.vpi_bad_range),
fore200e_swap(fore200e->stats->atm.vpi_no_conn),
fore200e_swap(fore200e->stats->atm.vci_bad_range),
fore200e_swap(fore200e->stats->atm.vci_no_conn));
if (!left--)
return sprintf(page,"\n"
" AAL0:\t\t\t cells\n"
" TX:\t\t\t%10u\n"
" RX:\t\t\t%10u\n"
" dropped:\t\t\t%10u\n",
fore200e_swap(fore200e->stats->aal0.cells_transmitted),
fore200e_swap(fore200e->stats->aal0.cells_received),
fore200e_swap(fore200e->stats->aal0.cells_dropped));
if (!left--)
return sprintf(page,"\n"
" AAL3/4:\n"
" SAR sublayer:\t\t cells\n"
" TX:\t\t\t%10u\n"
" RX:\t\t\t%10u\n"
" dropped:\t\t\t%10u\n"
" CRC errors:\t\t%10u\n"
" protocol errors:\t\t%10u\n\n"
" CS sublayer:\t\t PDUs\n"
" TX:\t\t\t%10u\n"
" RX:\t\t\t%10u\n"
" dropped:\t\t\t%10u\n"
" protocol errors:\t\t%10u\n",
fore200e_swap(fore200e->stats->aal34.cells_transmitted),
fore200e_swap(fore200e->stats->aal34.cells_received),
fore200e_swap(fore200e->stats->aal34.cells_dropped),
fore200e_swap(fore200e->stats->aal34.cells_crc_errors),
fore200e_swap(fore200e->stats->aal34.cells_protocol_errors),
fore200e_swap(fore200e->stats->aal34.cspdus_transmitted),
fore200e_swap(fore200e->stats->aal34.cspdus_received),
fore200e_swap(fore200e->stats->aal34.cspdus_dropped),
fore200e_swap(fore200e->stats->aal34.cspdus_protocol_errors));
if (!left--)
return sprintf(page,"\n"
" AAL5:\n"
" SAR sublayer:\t\t cells\n"
" TX:\t\t\t%10u\n"
" RX:\t\t\t%10u\n"
" dropped:\t\t\t%10u\n"
" congestions:\t\t%10u\n\n"
" CS sublayer:\t\t PDUs\n"
" TX:\t\t\t%10u\n"
" RX:\t\t\t%10u\n"
" dropped:\t\t\t%10u\n"
" CRC errors:\t\t%10u\n"
" protocol errors:\t\t%10u\n",
fore200e_swap(fore200e->stats->aal5.cells_transmitted),
fore200e_swap(fore200e->stats->aal5.cells_received),
fore200e_swap(fore200e->stats->aal5.cells_dropped),
fore200e_swap(fore200e->stats->aal5.congestion_experienced),
fore200e_swap(fore200e->stats->aal5.cspdus_transmitted),
fore200e_swap(fore200e->stats->aal5.cspdus_received),
fore200e_swap(fore200e->stats->aal5.cspdus_dropped),
fore200e_swap(fore200e->stats->aal5.cspdus_crc_errors),
fore200e_swap(fore200e->stats->aal5.cspdus_protocol_errors));
if (!left--)
return sprintf(page,"\n"
" AUX:\t\t allocation failures\n"
" small b1:\t\t\t%10u\n"
" large b1:\t\t\t%10u\n"
" small b2:\t\t\t%10u\n"
" large b2:\t\t\t%10u\n"
" RX PDUs:\t\t\t%10u\n"
" TX PDUs:\t\t\t%10lu\n",
fore200e_swap(fore200e->stats->aux.small_b1_failed),
fore200e_swap(fore200e->stats->aux.large_b1_failed),
fore200e_swap(fore200e->stats->aux.small_b2_failed),
fore200e_swap(fore200e->stats->aux.large_b2_failed),
fore200e_swap(fore200e->stats->aux.rpd_alloc_failed),
fore200e->tx_sat);
if (!left--)
return sprintf(page,"\n"
" receive carrier:\t\t\t%s\n",
fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
if (!left--) {
return sprintf(page,"\n"
" VCCs:\n address VPI VCI AAL "
"TX PDUs TX min/max size RX PDUs RX min/max size\n");
}
for (i = 0; i < NBR_CONNECT; i++) {
vcc = fore200e->vc_map[i].vcc;
if (vcc == NULL)
continue;
spin_lock_irqsave(&fore200e->q_lock, flags);
if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
fore200e_vcc = FORE200E_VCC(vcc);
ASSERT(fore200e_vcc);
len = sprintf(page,
" %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
(u32)(unsigned long)vcc,
vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
fore200e_vcc->tx_pdu,
fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
fore200e_vcc->tx_max_pdu,
fore200e_vcc->rx_pdu,
fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
fore200e_vcc->rx_max_pdu);
spin_unlock_irqrestore(&fore200e->q_lock, flags);
return len;
}
spin_unlock_irqrestore(&fore200e->q_lock, flags);
}
return 0;
}
module_init(fore200e_module_init);
module_exit(fore200e_module_cleanup);
static const struct atmdev_ops fore200e_ops =
{
.open = fore200e_open,
.close = fore200e_close,
.ioctl = fore200e_ioctl,
.getsockopt = fore200e_getsockopt,
.setsockopt = fore200e_setsockopt,
.send = fore200e_send,
.change_qos = fore200e_change_qos,
.proc_read = fore200e_proc_read,
.owner = THIS_MODULE
};
#ifdef CONFIG_ATM_FORE200E_PCA
extern const unsigned char _fore200e_pca_fw_data[];
extern const unsigned int _fore200e_pca_fw_size;
#endif
#ifdef CONFIG_ATM_FORE200E_SBA
extern const unsigned char _fore200e_sba_fw_data[];
extern const unsigned int _fore200e_sba_fw_size;
#endif
static const struct fore200e_bus fore200e_bus[] = {
#ifdef CONFIG_ATM_FORE200E_PCA
{ "PCA-200E", "pca200e", 32, 4, 32,
_fore200e_pca_fw_data, &_fore200e_pca_fw_size,
fore200e_pca_read,
fore200e_pca_write,
fore200e_pca_dma_map,
fore200e_pca_dma_unmap,
fore200e_pca_dma_sync_for_cpu,
fore200e_pca_dma_sync_for_device,
fore200e_pca_dma_chunk_alloc,
fore200e_pca_dma_chunk_free,
NULL,
fore200e_pca_configure,
fore200e_pca_map,
fore200e_pca_reset,
fore200e_pca_prom_read,
fore200e_pca_unmap,
NULL,
fore200e_pca_irq_check,
fore200e_pca_irq_ack,
fore200e_pca_proc_read,
},
#endif
#ifdef CONFIG_ATM_FORE200E_SBA
{ "SBA-200E", "sba200e", 32, 64, 32,
_fore200e_sba_fw_data, &_fore200e_sba_fw_size,
fore200e_sba_read,
fore200e_sba_write,
fore200e_sba_dma_map,
fore200e_sba_dma_unmap,
fore200e_sba_dma_sync_for_cpu,
fore200e_sba_dma_sync_for_device,
fore200e_sba_dma_chunk_alloc,
fore200e_sba_dma_chunk_free,
fore200e_sba_detect,
fore200e_sba_configure,
fore200e_sba_map,
fore200e_sba_reset,
fore200e_sba_prom_read,
fore200e_sba_unmap,
fore200e_sba_irq_enable,
fore200e_sba_irq_check,
fore200e_sba_irq_ack,
fore200e_sba_proc_read,
},
#endif
{}
};
#ifdef MODULE_LICENSE
MODULE_LICENSE("GPL");
#endif