14eb75b6f8
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
697 lines
17 KiB
C
697 lines
17 KiB
C
/*
|
|
* arch/arm/common/dmabounce.c
|
|
*
|
|
* Special dma_{map/unmap/dma_sync}_* routines for systems that have
|
|
* limited DMA windows. These functions utilize bounce buffers to
|
|
* copy data to/from buffers located outside the DMA region. This
|
|
* only works for systems in which DMA memory is at the bottom of
|
|
* RAM and the remainder of memory is at the top an the DMA memory
|
|
* can be marked as ZONE_DMA. Anything beyond that such as discontigous
|
|
* DMA windows will require custom implementations that reserve memory
|
|
* areas at early bootup.
|
|
*
|
|
* Original version by Brad Parker (brad@heeltoe.com)
|
|
* Re-written by Christopher Hoover <ch@murgatroid.com>
|
|
* Made generic by Deepak Saxena <dsaxena@plexity.net>
|
|
*
|
|
* Copyright (C) 2002 Hewlett Packard Company.
|
|
* Copyright (C) 2004 MontaVista Software, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/list.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
#undef DEBUG
|
|
|
|
#undef STATS
|
|
#ifdef STATS
|
|
#define DO_STATS(X) do { X ; } while (0)
|
|
#else
|
|
#define DO_STATS(X) do { } while (0)
|
|
#endif
|
|
|
|
/* ************************************************** */
|
|
|
|
struct safe_buffer {
|
|
struct list_head node;
|
|
|
|
/* original request */
|
|
void *ptr;
|
|
size_t size;
|
|
int direction;
|
|
|
|
/* safe buffer info */
|
|
struct dma_pool *pool;
|
|
void *safe;
|
|
dma_addr_t safe_dma_addr;
|
|
};
|
|
|
|
struct dmabounce_device_info {
|
|
struct list_head node;
|
|
|
|
struct device *dev;
|
|
struct dma_pool *small_buffer_pool;
|
|
struct dma_pool *large_buffer_pool;
|
|
struct list_head safe_buffers;
|
|
unsigned long small_buffer_size, large_buffer_size;
|
|
#ifdef STATS
|
|
unsigned long sbp_allocs;
|
|
unsigned long lbp_allocs;
|
|
unsigned long total_allocs;
|
|
unsigned long map_op_count;
|
|
unsigned long bounce_count;
|
|
#endif
|
|
};
|
|
|
|
static LIST_HEAD(dmabounce_devs);
|
|
|
|
#ifdef STATS
|
|
static void print_alloc_stats(struct dmabounce_device_info *device_info)
|
|
{
|
|
printk(KERN_INFO
|
|
"%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
|
|
device_info->dev->bus_id,
|
|
device_info->sbp_allocs, device_info->lbp_allocs,
|
|
device_info->total_allocs - device_info->sbp_allocs -
|
|
device_info->lbp_allocs,
|
|
device_info->total_allocs);
|
|
}
|
|
#endif
|
|
|
|
/* find the given device in the dmabounce device list */
|
|
static inline struct dmabounce_device_info *
|
|
find_dmabounce_dev(struct device *dev)
|
|
{
|
|
struct list_head *entry;
|
|
|
|
list_for_each(entry, &dmabounce_devs) {
|
|
struct dmabounce_device_info *d =
|
|
list_entry(entry, struct dmabounce_device_info, node);
|
|
|
|
if (d->dev == dev)
|
|
return d;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* allocate a 'safe' buffer and keep track of it */
|
|
static inline struct safe_buffer *
|
|
alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
struct safe_buffer *buf;
|
|
struct dma_pool *pool;
|
|
struct device *dev = device_info->dev;
|
|
void *safe;
|
|
dma_addr_t safe_dma_addr;
|
|
|
|
dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
|
|
__func__, ptr, size, dir);
|
|
|
|
DO_STATS ( device_info->total_allocs++ );
|
|
|
|
buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
|
|
if (buf == NULL) {
|
|
dev_warn(dev, "%s: kmalloc failed\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
if (size <= device_info->small_buffer_size) {
|
|
pool = device_info->small_buffer_pool;
|
|
safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
|
|
|
|
DO_STATS ( device_info->sbp_allocs++ );
|
|
} else if (size <= device_info->large_buffer_size) {
|
|
pool = device_info->large_buffer_pool;
|
|
safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
|
|
|
|
DO_STATS ( device_info->lbp_allocs++ );
|
|
} else {
|
|
pool = NULL;
|
|
safe = dma_alloc_coherent(dev, size, &safe_dma_addr, GFP_ATOMIC);
|
|
}
|
|
|
|
if (safe == NULL) {
|
|
dev_warn(device_info->dev,
|
|
"%s: could not alloc dma memory (size=%d)\n",
|
|
__func__, size);
|
|
kfree(buf);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef STATS
|
|
if (device_info->total_allocs % 1000 == 0)
|
|
print_alloc_stats(device_info);
|
|
#endif
|
|
|
|
buf->ptr = ptr;
|
|
buf->size = size;
|
|
buf->direction = dir;
|
|
buf->pool = pool;
|
|
buf->safe = safe;
|
|
buf->safe_dma_addr = safe_dma_addr;
|
|
|
|
list_add(&buf->node, &device_info->safe_buffers);
|
|
|
|
return buf;
|
|
}
|
|
|
|
/* determine if a buffer is from our "safe" pool */
|
|
static inline struct safe_buffer *
|
|
find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
|
|
{
|
|
struct list_head *entry;
|
|
|
|
list_for_each(entry, &device_info->safe_buffers) {
|
|
struct safe_buffer *b =
|
|
list_entry(entry, struct safe_buffer, node);
|
|
|
|
if (b->safe_dma_addr == safe_dma_addr)
|
|
return b;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void
|
|
free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
|
|
{
|
|
dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
|
|
|
|
list_del(&buf->node);
|
|
|
|
if (buf->pool)
|
|
dma_pool_free(buf->pool, buf->safe, buf->safe_dma_addr);
|
|
else
|
|
dma_free_coherent(device_info->dev, buf->size, buf->safe,
|
|
buf->safe_dma_addr);
|
|
|
|
kfree(buf);
|
|
}
|
|
|
|
/* ************************************************** */
|
|
|
|
#ifdef STATS
|
|
|
|
static void print_map_stats(struct dmabounce_device_info *device_info)
|
|
{
|
|
printk(KERN_INFO
|
|
"%s: dmabounce: map_op_count=%lu, bounce_count=%lu\n",
|
|
device_info->dev->bus_id,
|
|
device_info->map_op_count, device_info->bounce_count);
|
|
}
|
|
#endif
|
|
|
|
static inline dma_addr_t
|
|
map_single(struct device *dev, void *ptr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
|
|
dma_addr_t dma_addr;
|
|
int needs_bounce = 0;
|
|
|
|
if (device_info)
|
|
DO_STATS ( device_info->map_op_count++ );
|
|
|
|
dma_addr = virt_to_dma(dev, ptr);
|
|
|
|
if (dev->dma_mask) {
|
|
unsigned long mask = *dev->dma_mask;
|
|
unsigned long limit;
|
|
|
|
limit = (mask + 1) & ~mask;
|
|
if (limit && size > limit) {
|
|
dev_err(dev, "DMA mapping too big (requested %#x "
|
|
"mask %#Lx)\n", size, *dev->dma_mask);
|
|
return ~0;
|
|
}
|
|
|
|
/*
|
|
* Figure out if we need to bounce from the DMA mask.
|
|
*/
|
|
needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
|
|
}
|
|
|
|
if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
|
|
struct safe_buffer *buf;
|
|
|
|
buf = alloc_safe_buffer(device_info, ptr, size, dir);
|
|
if (buf == 0) {
|
|
dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
|
|
__func__, ptr);
|
|
return 0;
|
|
}
|
|
|
|
dev_dbg(dev,
|
|
"%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
|
|
__func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
|
|
buf->safe, (void *) buf->safe_dma_addr);
|
|
|
|
if ((dir == DMA_TO_DEVICE) ||
|
|
(dir == DMA_BIDIRECTIONAL)) {
|
|
dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
|
|
__func__, ptr, buf->safe, size);
|
|
memcpy(buf->safe, ptr, size);
|
|
}
|
|
consistent_sync(buf->safe, size, dir);
|
|
|
|
dma_addr = buf->safe_dma_addr;
|
|
} else {
|
|
consistent_sync(ptr, size, dir);
|
|
}
|
|
|
|
return dma_addr;
|
|
}
|
|
|
|
static inline void
|
|
unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
|
|
struct safe_buffer *buf = NULL;
|
|
|
|
/*
|
|
* Trying to unmap an invalid mapping
|
|
*/
|
|
if (dma_addr == ~0) {
|
|
dev_err(dev, "Trying to unmap invalid mapping\n");
|
|
return;
|
|
}
|
|
|
|
if (device_info)
|
|
buf = find_safe_buffer(device_info, dma_addr);
|
|
|
|
if (buf) {
|
|
BUG_ON(buf->size != size);
|
|
|
|
dev_dbg(dev,
|
|
"%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
|
|
__func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
|
|
buf->safe, (void *) buf->safe_dma_addr);
|
|
|
|
|
|
DO_STATS ( device_info->bounce_count++ );
|
|
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
|
|
unsigned long ptr;
|
|
|
|
dev_dbg(dev,
|
|
"%s: copy back safe %p to unsafe %p size %d\n",
|
|
__func__, buf->safe, buf->ptr, size);
|
|
memcpy(buf->ptr, buf->safe, size);
|
|
|
|
/*
|
|
* DMA buffers must have the same cache properties
|
|
* as if they were really used for DMA - which means
|
|
* data must be written back to RAM. Note that
|
|
* we don't use dmac_flush_range() here for the
|
|
* bidirectional case because we know the cache
|
|
* lines will be coherent with the data written.
|
|
*/
|
|
ptr = (unsigned long)buf->ptr;
|
|
dmac_clean_range(ptr, ptr + size);
|
|
}
|
|
free_safe_buffer(device_info, buf);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
|
|
struct safe_buffer *buf = NULL;
|
|
|
|
if (device_info)
|
|
buf = find_safe_buffer(device_info, dma_addr);
|
|
|
|
if (buf) {
|
|
/*
|
|
* Both of these checks from original code need to be
|
|
* commented out b/c some drivers rely on the following:
|
|
*
|
|
* 1) Drivers may map a large chunk of memory into DMA space
|
|
* but only sync a small portion of it. Good example is
|
|
* allocating a large buffer, mapping it, and then
|
|
* breaking it up into small descriptors. No point
|
|
* in syncing the whole buffer if you only have to
|
|
* touch one descriptor.
|
|
*
|
|
* 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
|
|
* usually only synced in one dir at a time.
|
|
*
|
|
* See drivers/net/eepro100.c for examples of both cases.
|
|
*
|
|
* -ds
|
|
*
|
|
* BUG_ON(buf->size != size);
|
|
* BUG_ON(buf->direction != dir);
|
|
*/
|
|
|
|
dev_dbg(dev,
|
|
"%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
|
|
__func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
|
|
buf->safe, (void *) buf->safe_dma_addr);
|
|
|
|
DO_STATS ( device_info->bounce_count++ );
|
|
|
|
switch (dir) {
|
|
case DMA_FROM_DEVICE:
|
|
dev_dbg(dev,
|
|
"%s: copy back safe %p to unsafe %p size %d\n",
|
|
__func__, buf->safe, buf->ptr, size);
|
|
memcpy(buf->ptr, buf->safe, size);
|
|
break;
|
|
case DMA_TO_DEVICE:
|
|
dev_dbg(dev,
|
|
"%s: copy out unsafe %p to safe %p, size %d\n",
|
|
__func__,buf->ptr, buf->safe, size);
|
|
memcpy(buf->safe, buf->ptr, size);
|
|
break;
|
|
case DMA_BIDIRECTIONAL:
|
|
BUG(); /* is this allowed? what does it mean? */
|
|
default:
|
|
BUG();
|
|
}
|
|
consistent_sync(buf->safe, size, dir);
|
|
} else {
|
|
consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
|
|
}
|
|
}
|
|
|
|
/* ************************************************** */
|
|
|
|
/*
|
|
* see if a buffer address is in an 'unsafe' range. if it is
|
|
* allocate a 'safe' buffer and copy the unsafe buffer into it.
|
|
* substitute the safe buffer for the unsafe one.
|
|
* (basically move the buffer from an unsafe area to a safe one)
|
|
*/
|
|
dma_addr_t
|
|
dma_map_single(struct device *dev, void *ptr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned long flags;
|
|
dma_addr_t dma_addr;
|
|
|
|
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
|
|
__func__, ptr, size, dir);
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
local_irq_save(flags);
|
|
|
|
dma_addr = map_single(dev, ptr, size, dir);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return dma_addr;
|
|
}
|
|
|
|
/*
|
|
* see if a mapped address was really a "safe" buffer and if so, copy
|
|
* the data from the safe buffer back to the unsafe buffer and free up
|
|
* the safe buffer. (basically return things back to the way they
|
|
* should be)
|
|
*/
|
|
|
|
void
|
|
dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned long flags;
|
|
|
|
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
|
|
__func__, (void *) dma_addr, size, dir);
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
local_irq_save(flags);
|
|
|
|
unmap_single(dev, dma_addr, size, dir);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
int
|
|
dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
|
|
__func__, sg, nents, dir);
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
local_irq_save(flags);
|
|
|
|
for (i = 0; i < nents; i++, sg++) {
|
|
struct page *page = sg->page;
|
|
unsigned int offset = sg->offset;
|
|
unsigned int length = sg->length;
|
|
void *ptr = page_address(page) + offset;
|
|
|
|
sg->dma_address =
|
|
map_single(dev, ptr, length, dir);
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return nents;
|
|
}
|
|
|
|
void
|
|
dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
|
|
__func__, sg, nents, dir);
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
local_irq_save(flags);
|
|
|
|
for (i = 0; i < nents; i++, sg++) {
|
|
dma_addr_t dma_addr = sg->dma_address;
|
|
unsigned int length = sg->length;
|
|
|
|
unmap_single(dev, dma_addr, length, dir);
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void
|
|
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned long flags;
|
|
|
|
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
|
|
__func__, (void *) dma_addr, size, dir);
|
|
|
|
local_irq_save(flags);
|
|
|
|
sync_single(dev, dma_addr, size, dir);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void
|
|
dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned long flags;
|
|
|
|
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
|
|
__func__, (void *) dma_addr, size, dir);
|
|
|
|
local_irq_save(flags);
|
|
|
|
sync_single(dev, dma_addr, size, dir);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void
|
|
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
|
|
__func__, sg, nents, dir);
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
local_irq_save(flags);
|
|
|
|
for (i = 0; i < nents; i++, sg++) {
|
|
dma_addr_t dma_addr = sg->dma_address;
|
|
unsigned int length = sg->length;
|
|
|
|
sync_single(dev, dma_addr, length, dir);
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void
|
|
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
|
|
__func__, sg, nents, dir);
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
local_irq_save(flags);
|
|
|
|
for (i = 0; i < nents; i++, sg++) {
|
|
dma_addr_t dma_addr = sg->dma_address;
|
|
unsigned int length = sg->length;
|
|
|
|
sync_single(dev, dma_addr, length, dir);
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
int
|
|
dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
|
|
unsigned long large_buffer_size)
|
|
{
|
|
struct dmabounce_device_info *device_info;
|
|
|
|
device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
|
|
if (!device_info) {
|
|
printk(KERN_ERR
|
|
"Could not allocated dmabounce_device_info for %s",
|
|
dev->bus_id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
device_info->small_buffer_pool =
|
|
dma_pool_create("small_dmabounce_pool",
|
|
dev,
|
|
small_buffer_size,
|
|
0 /* byte alignment */,
|
|
0 /* no page-crossing issues */);
|
|
if (!device_info->small_buffer_pool) {
|
|
printk(KERN_ERR
|
|
"dmabounce: could not allocate small DMA pool for %s\n",
|
|
dev->bus_id);
|
|
kfree(device_info);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (large_buffer_size) {
|
|
device_info->large_buffer_pool =
|
|
dma_pool_create("large_dmabounce_pool",
|
|
dev,
|
|
large_buffer_size,
|
|
0 /* byte alignment */,
|
|
0 /* no page-crossing issues */);
|
|
if (!device_info->large_buffer_pool) {
|
|
printk(KERN_ERR
|
|
"dmabounce: could not allocate large DMA pool for %s\n",
|
|
dev->bus_id);
|
|
dma_pool_destroy(device_info->small_buffer_pool);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
device_info->dev = dev;
|
|
device_info->small_buffer_size = small_buffer_size;
|
|
device_info->large_buffer_size = large_buffer_size;
|
|
INIT_LIST_HEAD(&device_info->safe_buffers);
|
|
|
|
#ifdef STATS
|
|
device_info->sbp_allocs = 0;
|
|
device_info->lbp_allocs = 0;
|
|
device_info->total_allocs = 0;
|
|
device_info->map_op_count = 0;
|
|
device_info->bounce_count = 0;
|
|
#endif
|
|
|
|
list_add(&device_info->node, &dmabounce_devs);
|
|
|
|
printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
|
|
dev->bus_id, dev->bus->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
dmabounce_unregister_dev(struct device *dev)
|
|
{
|
|
struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
|
|
|
|
if (!device_info) {
|
|
printk(KERN_WARNING
|
|
"%s: Never registered with dmabounce but attempting" \
|
|
"to unregister!\n", dev->bus_id);
|
|
return;
|
|
}
|
|
|
|
if (!list_empty(&device_info->safe_buffers)) {
|
|
printk(KERN_ERR
|
|
"%s: Removing from dmabounce with pending buffers!\n",
|
|
dev->bus_id);
|
|
BUG();
|
|
}
|
|
|
|
if (device_info->small_buffer_pool)
|
|
dma_pool_destroy(device_info->small_buffer_pool);
|
|
if (device_info->large_buffer_pool)
|
|
dma_pool_destroy(device_info->large_buffer_pool);
|
|
|
|
#ifdef STATS
|
|
print_alloc_stats(device_info);
|
|
print_map_stats(device_info);
|
|
#endif
|
|
|
|
list_del(&device_info->node);
|
|
|
|
kfree(device_info);
|
|
|
|
printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
|
|
dev->bus_id, dev->bus->name);
|
|
}
|
|
|
|
|
|
EXPORT_SYMBOL(dma_map_single);
|
|
EXPORT_SYMBOL(dma_unmap_single);
|
|
EXPORT_SYMBOL(dma_map_sg);
|
|
EXPORT_SYMBOL(dma_unmap_sg);
|
|
EXPORT_SYMBOL(dma_sync_single);
|
|
EXPORT_SYMBOL(dma_sync_sg);
|
|
EXPORT_SYMBOL(dmabounce_register_dev);
|
|
EXPORT_SYMBOL(dmabounce_unregister_dev);
|
|
|
|
MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
|
|
MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
|
|
MODULE_LICENSE("GPL");
|