kernel-aes67/drivers/net/wireless/zd1211rw/zd_usb.c
Daniel Drake b312d799b3 [PATCH] zd1211rw: usb_clear_halt not allowed in IRQ context
We will reimplement halt-clearing later, when we have periodic
housekeeping routines in place. This will do as a temporary fix, the
EPIPE case has not yet been seen.

Signed-off-by: Daniel Drake <dsd@gentoo.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2006-07-10 14:16:26 -04:00

1311 lines
30 KiB
C

/* zd_usb.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <asm/unaligned.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/firmware.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/usb.h>
#include <net/ieee80211.h>
#include "zd_def.h"
#include "zd_netdev.h"
#include "zd_mac.h"
#include "zd_usb.h"
#include "zd_util.h"
static struct usb_device_id usb_ids[] = {
/* ZD1211 */
{ USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
/* ZD1211B */
{ USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
{}
};
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
MODULE_AUTHOR("Ulrich Kunitz");
MODULE_AUTHOR("Daniel Drake");
MODULE_VERSION("1.0");
MODULE_DEVICE_TABLE(usb, usb_ids);
#define FW_ZD1211_PREFIX "zd1211/zd1211_"
#define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
/* register address handling */
#ifdef DEBUG
static int check_addr(struct zd_usb *usb, zd_addr_t addr)
{
u32 base = ZD_ADDR_BASE(addr);
u32 offset = ZD_OFFSET(addr);
if ((u32)addr & ADDR_ZERO_MASK)
goto invalid_address;
switch (base) {
case USB_BASE:
break;
case CR_BASE:
if (offset > CR_MAX_OFFSET) {
dev_dbg(zd_usb_dev(usb),
"CR offset %#010x larger than"
" CR_MAX_OFFSET %#10x\n",
offset, CR_MAX_OFFSET);
goto invalid_address;
}
if (offset & 1) {
dev_dbg(zd_usb_dev(usb),
"CR offset %#010x is not a multiple of 2\n",
offset);
goto invalid_address;
}
break;
case E2P_BASE:
if (offset > E2P_MAX_OFFSET) {
dev_dbg(zd_usb_dev(usb),
"E2P offset %#010x larger than"
" E2P_MAX_OFFSET %#010x\n",
offset, E2P_MAX_OFFSET);
goto invalid_address;
}
break;
case FW_BASE:
if (!usb->fw_base_offset) {
dev_dbg(zd_usb_dev(usb),
"ERROR: fw base offset has not been set\n");
return -EAGAIN;
}
if (offset > FW_MAX_OFFSET) {
dev_dbg(zd_usb_dev(usb),
"FW offset %#10x is larger than"
" FW_MAX_OFFSET %#010x\n",
offset, FW_MAX_OFFSET);
goto invalid_address;
}
break;
default:
dev_dbg(zd_usb_dev(usb),
"address has unsupported base %#010x\n", addr);
goto invalid_address;
}
return 0;
invalid_address:
dev_dbg(zd_usb_dev(usb),
"ERROR: invalid address: %#010x\n", addr);
return -EINVAL;
}
#endif /* DEBUG */
static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr)
{
u32 base;
u16 offset;
base = ZD_ADDR_BASE(addr);
offset = ZD_OFFSET(addr);
ZD_ASSERT(check_addr(usb, addr) == 0);
switch (base) {
case CR_BASE:
offset += CR_BASE_OFFSET;
break;
case E2P_BASE:
offset += E2P_BASE_OFFSET;
break;
case FW_BASE:
offset += usb->fw_base_offset;
break;
}
return offset;
}
/* USB device initialization */
static int request_fw_file(
const struct firmware **fw, const char *name, struct device *device)
{
int r;
dev_dbg_f(device, "fw name %s\n", name);
r = request_firmware(fw, name, device);
if (r)
dev_err(device,
"Could not load firmware file %s. Error number %d\n",
name, r);
return r;
}
static inline u16 get_bcdDevice(const struct usb_device *udev)
{
return le16_to_cpu(udev->descriptor.bcdDevice);
}
enum upload_code_flags {
REBOOT = 1,
};
/* Ensures that MAX_TRANSFER_SIZE is even. */
#define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
static int upload_code(struct usb_device *udev,
const u8 *data, size_t size, u16 code_offset, int flags)
{
u8 *p;
int r;
/* USB request blocks need "kmalloced" buffers.
*/
p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
if (!p) {
dev_err(&udev->dev, "out of memory\n");
r = -ENOMEM;
goto error;
}
size &= ~1;
while (size > 0) {
size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
size : MAX_TRANSFER_SIZE;
dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
memcpy(p, data, transfer_size);
r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
USB_REQ_FIRMWARE_DOWNLOAD,
USB_DIR_OUT | USB_TYPE_VENDOR,
code_offset, 0, p, transfer_size, 1000 /* ms */);
if (r < 0) {
dev_err(&udev->dev,
"USB control request for firmware upload"
" failed. Error number %d\n", r);
goto error;
}
transfer_size = r & ~1;
size -= transfer_size;
data += transfer_size;
code_offset += transfer_size/sizeof(u16);
}
if (flags & REBOOT) {
u8 ret;
r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
USB_REQ_FIRMWARE_CONFIRM,
USB_DIR_IN | USB_TYPE_VENDOR,
0, 0, &ret, sizeof(ret), 5000 /* ms */);
if (r != sizeof(ret)) {
dev_err(&udev->dev,
"control request firmeware confirmation failed."
" Return value %d\n", r);
if (r >= 0)
r = -ENODEV;
goto error;
}
if (ret & 0x80) {
dev_err(&udev->dev,
"Internal error while downloading."
" Firmware confirm return value %#04x\n",
(unsigned int)ret);
r = -ENODEV;
goto error;
}
dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
(unsigned int)ret);
}
r = 0;
error:
kfree(p);
return r;
}
static u16 get_word(const void *data, u16 offset)
{
const __le16 *p = data;
return le16_to_cpu(p[offset]);
}
static char *get_fw_name(char *buffer, size_t size, u8 device_type,
const char* postfix)
{
scnprintf(buffer, size, "%s%s",
device_type == DEVICE_ZD1211B ?
FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
postfix);
return buffer;
}
static int upload_firmware(struct usb_device *udev, u8 device_type)
{
int r;
u16 fw_bcdDevice;
u16 bcdDevice;
const struct firmware *ub_fw = NULL;
const struct firmware *uph_fw = NULL;
char fw_name[128];
bcdDevice = get_bcdDevice(udev);
r = request_fw_file(&ub_fw,
get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"),
&udev->dev);
if (r)
goto error;
fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET);
/* FIXME: do we have any reason to perform the kludge that the vendor
* driver does when there is a version mismatch? (their driver uploads
* different firmwares and stuff)
*/
if (fw_bcdDevice != bcdDevice) {
dev_info(&udev->dev,
"firmware device id %#06x and actual device id "
"%#06x differ, continuing anyway\n",
fw_bcdDevice, bcdDevice);
} else {
dev_dbg_f(&udev->dev,
"firmware device id %#06x is equal to the "
"actual device id\n", fw_bcdDevice);
}
r = request_fw_file(&uph_fw,
get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
&udev->dev);
if (r)
goto error;
r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET,
REBOOT);
if (r) {
dev_err(&udev->dev,
"Could not upload firmware code uph. Error number %d\n",
r);
}
/* FALL-THROUGH */
error:
release_firmware(ub_fw);
release_firmware(uph_fw);
return r;
}
static void disable_read_regs_int(struct zd_usb *usb)
{
struct zd_usb_interrupt *intr = &usb->intr;
ZD_ASSERT(in_interrupt());
spin_lock(&intr->lock);
intr->read_regs_enabled = 0;
spin_unlock(&intr->lock);
}
#define urb_dev(urb) (&(urb)->dev->dev)
static inline void handle_regs_int(struct urb *urb)
{
struct zd_usb *usb = urb->context;
struct zd_usb_interrupt *intr = &usb->intr;
int len;
ZD_ASSERT(in_interrupt());
spin_lock(&intr->lock);
if (intr->read_regs_enabled) {
intr->read_regs.length = len = urb->actual_length;
if (len > sizeof(intr->read_regs.buffer))
len = sizeof(intr->read_regs.buffer);
memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
intr->read_regs_enabled = 0;
complete(&intr->read_regs.completion);
goto out;
}
dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
out:
spin_unlock(&intr->lock);
}
static inline void handle_retry_failed_int(struct urb *urb)
{
dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
}
static void int_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
{
int r;
struct usb_int_header *hdr;
switch (urb->status) {
case 0:
break;
case -ESHUTDOWN:
case -EINVAL:
case -ENODEV:
case -ENOENT:
case -ECONNRESET:
case -EPIPE:
goto kfree;
default:
goto resubmit;
}
if (urb->actual_length < sizeof(hdr)) {
dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
goto resubmit;
}
hdr = urb->transfer_buffer;
if (hdr->type != USB_INT_TYPE) {
dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
goto resubmit;
}
switch (hdr->id) {
case USB_INT_ID_REGS:
handle_regs_int(urb);
break;
case USB_INT_ID_RETRY_FAILED:
handle_retry_failed_int(urb);
break;
default:
dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
(unsigned int)hdr->id);
goto resubmit;
}
resubmit:
r = usb_submit_urb(urb, GFP_ATOMIC);
if (r) {
dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
goto kfree;
}
return;
kfree:
kfree(urb->transfer_buffer);
}
static inline int int_urb_interval(struct usb_device *udev)
{
switch (udev->speed) {
case USB_SPEED_HIGH:
return 4;
case USB_SPEED_LOW:
return 10;
case USB_SPEED_FULL:
default:
return 1;
}
}
static inline int usb_int_enabled(struct zd_usb *usb)
{
unsigned long flags;
struct zd_usb_interrupt *intr = &usb->intr;
struct urb *urb;
spin_lock_irqsave(&intr->lock, flags);
urb = intr->urb;
spin_unlock_irqrestore(&intr->lock, flags);
return urb != NULL;
}
int zd_usb_enable_int(struct zd_usb *usb)
{
int r;
struct usb_device *udev;
struct zd_usb_interrupt *intr = &usb->intr;
void *transfer_buffer = NULL;
struct urb *urb;
dev_dbg_f(zd_usb_dev(usb), "\n");
urb = usb_alloc_urb(0, GFP_NOFS);
if (!urb) {
r = -ENOMEM;
goto out;
}
ZD_ASSERT(!irqs_disabled());
spin_lock_irq(&intr->lock);
if (intr->urb) {
spin_unlock_irq(&intr->lock);
r = 0;
goto error_free_urb;
}
intr->urb = urb;
spin_unlock_irq(&intr->lock);
/* TODO: make it a DMA buffer */
r = -ENOMEM;
transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
if (!transfer_buffer) {
dev_dbg_f(zd_usb_dev(usb),
"couldn't allocate transfer_buffer\n");
goto error_set_urb_null;
}
udev = zd_usb_to_usbdev(usb);
usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
transfer_buffer, USB_MAX_EP_INT_BUFFER,
int_urb_complete, usb,
intr->interval);
dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
r = usb_submit_urb(urb, GFP_NOFS);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"Couldn't submit urb. Error number %d\n", r);
goto error;
}
return 0;
error:
kfree(transfer_buffer);
error_set_urb_null:
spin_lock_irq(&intr->lock);
intr->urb = NULL;
spin_unlock_irq(&intr->lock);
error_free_urb:
usb_free_urb(urb);
out:
return r;
}
void zd_usb_disable_int(struct zd_usb *usb)
{
unsigned long flags;
struct zd_usb_interrupt *intr = &usb->intr;
struct urb *urb;
spin_lock_irqsave(&intr->lock, flags);
urb = intr->urb;
if (!urb) {
spin_unlock_irqrestore(&intr->lock, flags);
return;
}
intr->urb = NULL;
spin_unlock_irqrestore(&intr->lock, flags);
usb_kill_urb(urb);
dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
usb_free_urb(urb);
}
static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
unsigned int length)
{
int i;
struct zd_mac *mac = zd_usb_to_mac(usb);
const struct rx_length_info *length_info;
if (length < sizeof(struct rx_length_info)) {
/* It's not a complete packet anyhow. */
return;
}
length_info = (struct rx_length_info *)
(buffer + length - sizeof(struct rx_length_info));
/* It might be that three frames are merged into a single URB
* transaction. We have to check for the length info tag.
*
* While testing we discovered that length_info might be unaligned,
* because if USB transactions are merged, the last packet will not
* be padded. Unaligned access might also happen if the length_info
* structure is not present.
*/
if (get_unaligned(&length_info->tag) == RX_LENGTH_INFO_TAG) {
unsigned int l, k, n;
for (i = 0, l = 0;; i++) {
k = le16_to_cpu(get_unaligned(
&length_info->length[i]));
n = l+k;
if (n > length)
return;
zd_mac_rx(mac, buffer+l, k);
if (i >= 2)
return;
l = (n+3) & ~3;
}
} else {
zd_mac_rx(mac, buffer, length);
}
}
static void rx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
{
struct zd_usb *usb;
struct zd_usb_rx *rx;
const u8 *buffer;
unsigned int length;
switch (urb->status) {
case 0:
break;
case -ESHUTDOWN:
case -EINVAL:
case -ENODEV:
case -ENOENT:
case -ECONNRESET:
case -EPIPE:
return;
default:
dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
goto resubmit;
}
buffer = urb->transfer_buffer;
length = urb->actual_length;
usb = urb->context;
rx = &usb->rx;
if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
/* If there is an old first fragment, we don't care. */
dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
spin_lock(&rx->lock);
memcpy(rx->fragment, buffer, length);
rx->fragment_length = length;
spin_unlock(&rx->lock);
goto resubmit;
}
spin_lock(&rx->lock);
if (rx->fragment_length > 0) {
/* We are on a second fragment, we believe */
ZD_ASSERT(length + rx->fragment_length <=
ARRAY_SIZE(rx->fragment));
dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
memcpy(rx->fragment+rx->fragment_length, buffer, length);
handle_rx_packet(usb, rx->fragment,
rx->fragment_length + length);
rx->fragment_length = 0;
spin_unlock(&rx->lock);
} else {
spin_unlock(&rx->lock);
handle_rx_packet(usb, buffer, length);
}
resubmit:
usb_submit_urb(urb, GFP_ATOMIC);
}
struct urb *alloc_urb(struct zd_usb *usb)
{
struct usb_device *udev = zd_usb_to_usbdev(usb);
struct urb *urb;
void *buffer;
urb = usb_alloc_urb(0, GFP_NOFS);
if (!urb)
return NULL;
buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
&urb->transfer_dma);
if (!buffer) {
usb_free_urb(urb);
return NULL;
}
usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
buffer, USB_MAX_RX_SIZE,
rx_urb_complete, usb);
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
return urb;
}
void free_urb(struct urb *urb)
{
if (!urb)
return;
usb_buffer_free(urb->dev, urb->transfer_buffer_length,
urb->transfer_buffer, urb->transfer_dma);
usb_free_urb(urb);
}
int zd_usb_enable_rx(struct zd_usb *usb)
{
int i, r;
struct zd_usb_rx *rx = &usb->rx;
struct urb **urbs;
dev_dbg_f(zd_usb_dev(usb), "\n");
r = -ENOMEM;
urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
if (!urbs)
goto error;
for (i = 0; i < URBS_COUNT; i++) {
urbs[i] = alloc_urb(usb);
if (!urbs[i])
goto error;
}
ZD_ASSERT(!irqs_disabled());
spin_lock_irq(&rx->lock);
if (rx->urbs) {
spin_unlock_irq(&rx->lock);
r = 0;
goto error;
}
rx->urbs = urbs;
rx->urbs_count = URBS_COUNT;
spin_unlock_irq(&rx->lock);
for (i = 0; i < URBS_COUNT; i++) {
r = usb_submit_urb(urbs[i], GFP_NOFS);
if (r)
goto error_submit;
}
return 0;
error_submit:
for (i = 0; i < URBS_COUNT; i++) {
usb_kill_urb(urbs[i]);
}
spin_lock_irq(&rx->lock);
rx->urbs = NULL;
rx->urbs_count = 0;
spin_unlock_irq(&rx->lock);
error:
if (urbs) {
for (i = 0; i < URBS_COUNT; i++)
free_urb(urbs[i]);
}
return r;
}
void zd_usb_disable_rx(struct zd_usb *usb)
{
int i;
unsigned long flags;
struct urb **urbs;
unsigned int count;
struct zd_usb_rx *rx = &usb->rx;
spin_lock_irqsave(&rx->lock, flags);
urbs = rx->urbs;
count = rx->urbs_count;
spin_unlock_irqrestore(&rx->lock, flags);
if (!urbs)
return;
for (i = 0; i < count; i++) {
usb_kill_urb(urbs[i]);
free_urb(urbs[i]);
}
kfree(urbs);
spin_lock_irqsave(&rx->lock, flags);
rx->urbs = NULL;
rx->urbs_count = 0;
spin_unlock_irqrestore(&rx->lock, flags);
}
static void tx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
{
int r;
switch (urb->status) {
case 0:
break;
case -ESHUTDOWN:
case -EINVAL:
case -ENODEV:
case -ENOENT:
case -ECONNRESET:
case -EPIPE:
dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
break;
default:
dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
goto resubmit;
}
free_urb:
usb_buffer_free(urb->dev, urb->transfer_buffer_length,
urb->transfer_buffer, urb->transfer_dma);
usb_free_urb(urb);
return;
resubmit:
r = usb_submit_urb(urb, GFP_ATOMIC);
if (r) {
dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
goto free_urb;
}
}
/* Puts the frame on the USB endpoint. It doesn't wait for
* completion. The frame must contain the control set.
*/
int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
{
int r;
struct usb_device *udev = zd_usb_to_usbdev(usb);
struct urb *urb;
void *buffer;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb) {
r = -ENOMEM;
goto out;
}
buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
&urb->transfer_dma);
if (!buffer) {
r = -ENOMEM;
goto error_free_urb;
}
memcpy(buffer, frame, length);
usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
buffer, length, tx_urb_complete, NULL);
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
r = usb_submit_urb(urb, GFP_ATOMIC);
if (r)
goto error;
return 0;
error:
usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
urb->transfer_dma);
error_free_urb:
usb_free_urb(urb);
out:
return r;
}
static inline void init_usb_interrupt(struct zd_usb *usb)
{
struct zd_usb_interrupt *intr = &usb->intr;
spin_lock_init(&intr->lock);
intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
init_completion(&intr->read_regs.completion);
intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT));
}
static inline void init_usb_rx(struct zd_usb *usb)
{
struct zd_usb_rx *rx = &usb->rx;
spin_lock_init(&rx->lock);
if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
rx->usb_packet_size = 512;
} else {
rx->usb_packet_size = 64;
}
ZD_ASSERT(rx->fragment_length == 0);
}
static inline void init_usb_tx(struct zd_usb *usb)
{
/* FIXME: at this point we will allocate a fixed number of urb's for
* use in a cyclic scheme */
}
void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
struct usb_interface *intf)
{
memset(usb, 0, sizeof(*usb));
usb->intf = usb_get_intf(intf);
usb_set_intfdata(usb->intf, netdev);
init_usb_interrupt(usb);
init_usb_tx(usb);
init_usb_rx(usb);
}
int zd_usb_init_hw(struct zd_usb *usb)
{
int r;
struct zd_chip *chip = zd_usb_to_chip(usb);
ZD_ASSERT(mutex_is_locked(&chip->mutex));
r = zd_ioread16_locked(chip, &usb->fw_base_offset,
USB_REG((u16)FW_BASE_ADDR_OFFSET));
if (r)
return r;
dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n",
usb->fw_base_offset);
return 0;
}
void zd_usb_clear(struct zd_usb *usb)
{
usb_set_intfdata(usb->intf, NULL);
usb_put_intf(usb->intf);
memset(usb, 0, sizeof(*usb));
/* FIXME: usb_interrupt, usb_tx, usb_rx? */
}
static const char *speed(enum usb_device_speed speed)
{
switch (speed) {
case USB_SPEED_LOW:
return "low";
case USB_SPEED_FULL:
return "full";
case USB_SPEED_HIGH:
return "high";
default:
return "unknown speed";
}
}
static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
{
return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct),
get_bcdDevice(udev),
speed(udev->speed));
}
int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
{
struct usb_device *udev = interface_to_usbdev(usb->intf);
return scnprint_id(udev, buffer, size);
}
#ifdef DEBUG
static void print_id(struct usb_device *udev)
{
char buffer[40];
scnprint_id(udev, buffer, sizeof(buffer));
buffer[sizeof(buffer)-1] = 0;
dev_dbg_f(&udev->dev, "%s\n", buffer);
}
#else
#define print_id(udev) do { } while (0)
#endif
static int probe(struct usb_interface *intf, const struct usb_device_id *id)
{
int r;
struct usb_device *udev = interface_to_usbdev(intf);
struct net_device *netdev = NULL;
print_id(udev);
switch (udev->speed) {
case USB_SPEED_LOW:
case USB_SPEED_FULL:
case USB_SPEED_HIGH:
break;
default:
dev_dbg_f(&intf->dev, "Unknown USB speed\n");
r = -ENODEV;
goto error;
}
netdev = zd_netdev_alloc(intf);
if (netdev == NULL) {
r = -ENOMEM;
goto error;
}
r = upload_firmware(udev, id->driver_info);
if (r) {
dev_err(&intf->dev,
"couldn't load firmware. Error number %d\n", r);
goto error;
}
r = usb_reset_configuration(udev);
if (r) {
dev_dbg_f(&intf->dev,
"couldn't reset configuration. Error number %d\n", r);
goto error;
}
/* At this point the interrupt endpoint is not generally enabled. We
* save the USB bandwidth until the network device is opened. But
* notify that the initialization of the MAC will require the
* interrupts to be temporary enabled.
*/
r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
if (r) {
dev_dbg_f(&intf->dev,
"couldn't initialize mac. Error number %d\n", r);
goto error;
}
r = register_netdev(netdev);
if (r) {
dev_dbg_f(&intf->dev,
"couldn't register netdev. Error number %d\n", r);
goto error;
}
dev_dbg_f(&intf->dev, "successful\n");
dev_info(&intf->dev,"%s\n", netdev->name);
return 0;
error:
usb_reset_device(interface_to_usbdev(intf));
zd_netdev_free(netdev);
return r;
}
static void disconnect(struct usb_interface *intf)
{
struct net_device *netdev = zd_intf_to_netdev(intf);
struct zd_mac *mac = zd_netdev_mac(netdev);
struct zd_usb *usb = &mac->chip.usb;
dev_dbg_f(zd_usb_dev(usb), "\n");
zd_netdev_disconnect(netdev);
/* Just in case something has gone wrong! */
zd_usb_disable_rx(usb);
zd_usb_disable_int(usb);
/* If the disconnect has been caused by a removal of the
* driver module, the reset allows reloading of the driver. If the
* reset will not be executed here, the upload of the firmware in the
* probe function caused by the reloading of the driver will fail.
*/
usb_reset_device(interface_to_usbdev(intf));
/* If somebody still waits on this lock now, this is an error. */
zd_netdev_free(netdev);
dev_dbg(&intf->dev, "disconnected\n");
}
static struct usb_driver driver = {
.name = "zd1211rw",
.id_table = usb_ids,
.probe = probe,
.disconnect = disconnect,
};
static int __init usb_init(void)
{
int r;
pr_debug("usb_init()\n");
r = usb_register(&driver);
if (r) {
printk(KERN_ERR "usb_register() failed. Error number %d\n", r);
return r;
}
pr_debug("zd1211rw initialized\n");
return 0;
}
static void __exit usb_exit(void)
{
pr_debug("usb_exit()\n");
usb_deregister(&driver);
}
module_init(usb_init);
module_exit(usb_exit);
static int usb_int_regs_length(unsigned int count)
{
return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
}
static void prepare_read_regs_int(struct zd_usb *usb)
{
struct zd_usb_interrupt *intr = &usb->intr;
spin_lock(&intr->lock);
intr->read_regs_enabled = 1;
INIT_COMPLETION(intr->read_regs.completion);
spin_unlock(&intr->lock);
}
static int get_results(struct zd_usb *usb, u16 *values,
struct usb_req_read_regs *req, unsigned int count)
{
int r;
int i;
struct zd_usb_interrupt *intr = &usb->intr;
struct read_regs_int *rr = &intr->read_regs;
struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
spin_lock(&intr->lock);
r = -EIO;
/* The created block size seems to be larger than expected.
* However results appear to be correct.
*/
if (rr->length < usb_int_regs_length(count)) {
dev_dbg_f(zd_usb_dev(usb),
"error: actual length %d less than expected %d\n",
rr->length, usb_int_regs_length(count));
goto error_unlock;
}
if (rr->length > sizeof(rr->buffer)) {
dev_dbg_f(zd_usb_dev(usb),
"error: actual length %d exceeds buffer size %zu\n",
rr->length, sizeof(rr->buffer));
goto error_unlock;
}
for (i = 0; i < count; i++) {
struct reg_data *rd = &regs->regs[i];
if (rd->addr != req->addr[i]) {
dev_dbg_f(zd_usb_dev(usb),
"rd[%d] addr %#06hx expected %#06hx\n", i,
le16_to_cpu(rd->addr),
le16_to_cpu(req->addr[i]));
goto error_unlock;
}
values[i] = le16_to_cpu(rd->value);
}
r = 0;
error_unlock:
spin_unlock(&intr->lock);
return r;
}
int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
const zd_addr_t *addresses, unsigned int count)
{
int r;
int i, req_len, actual_req_len;
struct usb_device *udev;
struct usb_req_read_regs *req = NULL;
unsigned long timeout;
if (count < 1) {
dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
return -EINVAL;
}
if (count > USB_MAX_IOREAD16_COUNT) {
dev_dbg_f(zd_usb_dev(usb),
"error: count %u exceeds possible max %u\n",
count, USB_MAX_IOREAD16_COUNT);
return -EINVAL;
}
if (in_atomic()) {
dev_dbg_f(zd_usb_dev(usb),
"error: io in atomic context not supported\n");
return -EWOULDBLOCK;
}
if (!usb_int_enabled(usb)) {
dev_dbg_f(zd_usb_dev(usb),
"error: usb interrupt not enabled\n");
return -EWOULDBLOCK;
}
req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
req = kmalloc(req_len, GFP_NOFS);
if (!req)
return -ENOMEM;
req->id = cpu_to_le16(USB_REQ_READ_REGS);
for (i = 0; i < count; i++)
req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i]));
udev = zd_usb_to_usbdev(usb);
prepare_read_regs_int(usb);
r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
req, req_len, &actual_req_len, 1000 /* ms */);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"error in usb_bulk_msg(). Error number %d\n", r);
goto error;
}
if (req_len != actual_req_len) {
dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
" req_len %d != actual_req_len %d\n",
req_len, actual_req_len);
r = -EIO;
goto error;
}
timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
msecs_to_jiffies(1000));
if (!timeout) {
disable_read_regs_int(usb);
dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
r = -ETIMEDOUT;
goto error;
}
r = get_results(usb, values, req, count);
error:
kfree(req);
return r;
}
int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
unsigned int count)
{
int r;
struct usb_device *udev;
struct usb_req_write_regs *req = NULL;
int i, req_len, actual_req_len;
if (count == 0)
return 0;
if (count > USB_MAX_IOWRITE16_COUNT) {
dev_dbg_f(zd_usb_dev(usb),
"error: count %u exceeds possible max %u\n",
count, USB_MAX_IOWRITE16_COUNT);
return -EINVAL;
}
if (in_atomic()) {
dev_dbg_f(zd_usb_dev(usb),
"error: io in atomic context not supported\n");
return -EWOULDBLOCK;
}
req_len = sizeof(struct usb_req_write_regs) +
count * sizeof(struct reg_data);
req = kmalloc(req_len, GFP_NOFS);
if (!req)
return -ENOMEM;
req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
for (i = 0; i < count; i++) {
struct reg_data *rw = &req->reg_writes[i];
rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr));
rw->value = cpu_to_le16(ioreqs[i].value);
}
udev = zd_usb_to_usbdev(usb);
r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
req, req_len, &actual_req_len, 1000 /* ms */);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"error in usb_bulk_msg(). Error number %d\n", r);
goto error;
}
if (req_len != actual_req_len) {
dev_dbg_f(zd_usb_dev(usb),
"error in usb_bulk_msg()"
" req_len %d != actual_req_len %d\n",
req_len, actual_req_len);
r = -EIO;
goto error;
}
/* FALL-THROUGH with r == 0 */
error:
kfree(req);
return r;
}
int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
{
int r;
struct usb_device *udev;
struct usb_req_rfwrite *req = NULL;
int i, req_len, actual_req_len;
u16 bit_value_template;
if (in_atomic()) {
dev_dbg_f(zd_usb_dev(usb),
"error: io in atomic context not supported\n");
return -EWOULDBLOCK;
}
if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
dev_dbg_f(zd_usb_dev(usb),
"error: bits %d are smaller than"
" USB_MIN_RFWRITE_BIT_COUNT %d\n",
bits, USB_MIN_RFWRITE_BIT_COUNT);
return -EINVAL;
}
if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
dev_dbg_f(zd_usb_dev(usb),
"error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
bits, USB_MAX_RFWRITE_BIT_COUNT);
return -EINVAL;
}
#ifdef DEBUG
if (value & (~0UL << bits)) {
dev_dbg_f(zd_usb_dev(usb),
"error: value %#09x has bits >= %d set\n",
value, bits);
return -EINVAL;
}
#endif /* DEBUG */
dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
r = zd_usb_ioread16(usb, &bit_value_template, CR203);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"error %d: Couldn't read CR203\n", r);
goto out;
}
bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
req = kmalloc(req_len, GFP_NOFS);
if (!req)
return -ENOMEM;
req->id = cpu_to_le16(USB_REQ_WRITE_RF);
/* 1: 3683a, but not used in ZYDAS driver */
req->value = cpu_to_le16(2);
req->bits = cpu_to_le16(bits);
for (i = 0; i < bits; i++) {
u16 bv = bit_value_template;
if (value & (1 << (bits-1-i)))
bv |= RF_DATA;
req->bit_values[i] = cpu_to_le16(bv);
}
udev = zd_usb_to_usbdev(usb);
r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
req, req_len, &actual_req_len, 1000 /* ms */);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"error in usb_bulk_msg(). Error number %d\n", r);
goto out;
}
if (req_len != actual_req_len) {
dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
" req_len %d != actual_req_len %d\n",
req_len, actual_req_len);
r = -EIO;
goto out;
}
/* FALL-THROUGH with r == 0 */
out:
kfree(req);
return r;
}