kernel-aes67/drivers/spi/spi-nxp-fspi.c

1328 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* NXP FlexSPI(FSPI) controller driver.
*
* Copyright 2019-2020 NXP
* Copyright 2020 Puresoftware Ltd.
*
* FlexSPI is a flexsible SPI host controller which supports two SPI
* channels and up to 4 external devices. Each channel supports
* Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
* data lines).
*
* FlexSPI controller is driven by the LUT(Look-up Table) registers
* LUT registers are a look-up-table for sequences of instructions.
* A valid sequence consists of four LUT registers.
* Maximum 32 LUT sequences can be programmed simultaneously.
*
* LUTs are being created at run-time based on the commands passed
* from the spi-mem framework, thus using single LUT index.
*
* Software triggered Flash read/write access by IP Bus.
*
* Memory mapped read access by AHB Bus.
*
* Based on SPI MEM interface and spi-fsl-qspi.c driver.
*
* Author:
* Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
* Boris Brezillon <bbrezillon@kernel.org>
* Frieder Schrempf <frieder.schrempf@kontron.de>
*/
#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/regmap.h>
#include <linux/sizes.h>
#include <linux/sys_soc.h>
#include <linux/mfd/syscon.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
/*
* The driver only uses one single LUT entry, that is updated on
* each call of exec_op(). Index 0 is preset at boot with a basic
* read operation, so let's use the last entry (31).
*/
#define SEQID_LUT 31
/* Registers used by the driver */
#define FSPI_MCR0 0x00
#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR0_LEARN_EN BIT(15)
#define FSPI_MCR0_SCRFRUN_EN BIT(14)
#define FSPI_MCR0_OCTCOMB_EN BIT(13)
#define FSPI_MCR0_DOZE_EN BIT(12)
#define FSPI_MCR0_HSEN BIT(11)
#define FSPI_MCR0_SERCLKDIV BIT(8)
#define FSPI_MCR0_ATDF_EN BIT(7)
#define FSPI_MCR0_ARDF_EN BIT(6)
#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
#define FSPI_MCR0_END_CFG(x) ((x) << 2)
#define FSPI_MCR0_MDIS BIT(1)
#define FSPI_MCR0_SWRST BIT(0)
#define FSPI_MCR1 0x04
#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
#define FSPI_MCR2 0x08
#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
#define FSPI_MCR2_CLRLRPHS BIT(14)
#define FSPI_MCR2_ABRDATSZ BIT(8)
#define FSPI_MCR2_ABRLEARN BIT(7)
#define FSPI_MCR2_ABR_READ BIT(6)
#define FSPI_MCR2_ABRWRITE BIT(5)
#define FSPI_MCR2_ABRDUMMY BIT(4)
#define FSPI_MCR2_ABR_MODE BIT(3)
#define FSPI_MCR2_ABRCADDR BIT(2)
#define FSPI_MCR2_ABRRADDR BIT(1)
#define FSPI_MCR2_ABR_CMD BIT(0)
#define FSPI_AHBCR 0x0c
#define FSPI_AHBCR_RDADDROPT BIT(6)
#define FSPI_AHBCR_PREF_EN BIT(5)
#define FSPI_AHBCR_BUFF_EN BIT(4)
#define FSPI_AHBCR_CACH_EN BIT(3)
#define FSPI_AHBCR_CLRTXBUF BIT(2)
#define FSPI_AHBCR_CLRRXBUF BIT(1)
#define FSPI_AHBCR_PAR_EN BIT(0)
#define FSPI_INTEN 0x10
#define FSPI_INTEN_SCLKSBWR BIT(9)
#define FSPI_INTEN_SCLKSBRD BIT(8)
#define FSPI_INTEN_DATALRNFL BIT(7)
#define FSPI_INTEN_IPTXWE BIT(6)
#define FSPI_INTEN_IPRXWA BIT(5)
#define FSPI_INTEN_AHBCMDERR BIT(4)
#define FSPI_INTEN_IPCMDERR BIT(3)
#define FSPI_INTEN_AHBCMDGE BIT(2)
#define FSPI_INTEN_IPCMDGE BIT(1)
#define FSPI_INTEN_IPCMDDONE BIT(0)
#define FSPI_INTR 0x14
#define FSPI_INTR_SCLKSBWR BIT(9)
#define FSPI_INTR_SCLKSBRD BIT(8)
#define FSPI_INTR_DATALRNFL BIT(7)
#define FSPI_INTR_IPTXWE BIT(6)
#define FSPI_INTR_IPRXWA BIT(5)
#define FSPI_INTR_AHBCMDERR BIT(4)
#define FSPI_INTR_IPCMDERR BIT(3)
#define FSPI_INTR_AHBCMDGE BIT(2)
#define FSPI_INTR_IPCMDGE BIT(1)
#define FSPI_INTR_IPCMDDONE BIT(0)
#define FSPI_LUTKEY 0x18
#define FSPI_LUTKEY_VALUE 0x5AF05AF0
#define FSPI_LCKCR 0x1C
#define FSPI_LCKER_LOCK 0x1
#define FSPI_LCKER_UNLOCK 0x2
#define FSPI_BUFXCR_INVALID_MSTRID 0xE
#define FSPI_AHBRX_BUF0CR0 0x20
#define FSPI_AHBRX_BUF1CR0 0x24
#define FSPI_AHBRX_BUF2CR0 0x28
#define FSPI_AHBRX_BUF3CR0 0x2C
#define FSPI_AHBRX_BUF4CR0 0x30
#define FSPI_AHBRX_BUF5CR0 0x34
#define FSPI_AHBRX_BUF6CR0 0x38
#define FSPI_AHBRX_BUF7CR0 0x3C
#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
#define FSPI_AHBRX_BUF0CR1 0x40
#define FSPI_AHBRX_BUF1CR1 0x44
#define FSPI_AHBRX_BUF2CR1 0x48
#define FSPI_AHBRX_BUF3CR1 0x4C
#define FSPI_AHBRX_BUF4CR1 0x50
#define FSPI_AHBRX_BUF5CR1 0x54
#define FSPI_AHBRX_BUF6CR1 0x58
#define FSPI_AHBRX_BUF7CR1 0x5C
#define FSPI_FLSHA1CR0 0x60
#define FSPI_FLSHA2CR0 0x64
#define FSPI_FLSHB1CR0 0x68
#define FSPI_FLSHB2CR0 0x6C
#define FSPI_FLSHXCR0_SZ_KB 10
#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
#define FSPI_FLSHA1CR1 0x70
#define FSPI_FLSHA2CR1 0x74
#define FSPI_FLSHB1CR1 0x78
#define FSPI_FLSHB2CR1 0x7C
#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
#define FSPI_FLSHXCR1_WA BIT(10)
#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
#define FSPI_FLSHXCR1_TCSS(x) (x)
#define FSPI_FLSHA1CR2 0x80
#define FSPI_FLSHA2CR2 0x84
#define FSPI_FLSHB1CR2 0x88
#define FSPI_FLSHB2CR2 0x8C
#define FSPI_FLSHXCR2_CLRINSP BIT(24)
#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
#define FSPI_IPCR0 0xA0
#define FSPI_IPCR1 0xA4
#define FSPI_IPCR1_IPAREN BIT(31)
#define FSPI_IPCR1_SEQNUM_SHIFT 24
#define FSPI_IPCR1_SEQID_SHIFT 16
#define FSPI_IPCR1_IDATSZ(x) (x)
#define FSPI_IPCMD 0xB0
#define FSPI_IPCMD_TRG BIT(0)
#define FSPI_DLPR 0xB4
#define FSPI_IPRXFCR 0xB8
#define FSPI_IPRXFCR_CLR BIT(0)
#define FSPI_IPRXFCR_DMA_EN BIT(1)
#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
#define FSPI_IPTXFCR 0xBC
#define FSPI_IPTXFCR_CLR BIT(0)
#define FSPI_IPTXFCR_DMA_EN BIT(1)
#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
#define FSPI_DLLACR 0xC0
#define FSPI_DLLACR_OVRDEN BIT(8)
#define FSPI_DLLACR_SLVDLY(x) ((x) << 3)
#define FSPI_DLLACR_DLLRESET BIT(1)
#define FSPI_DLLACR_DLLEN BIT(0)
#define FSPI_DLLBCR 0xC4
#define FSPI_DLLBCR_OVRDEN BIT(8)
#define FSPI_DLLBCR_SLVDLY(x) ((x) << 3)
#define FSPI_DLLBCR_DLLRESET BIT(1)
#define FSPI_DLLBCR_DLLEN BIT(0)
#define FSPI_STS0 0xE0
#define FSPI_STS0_DLPHB(x) ((x) << 8)
#define FSPI_STS0_DLPHA(x) ((x) << 4)
#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
#define FSPI_STS0_ARB_IDLE BIT(1)
#define FSPI_STS0_SEQ_IDLE BIT(0)
#define FSPI_STS1 0xE4
#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
#define FSPI_STS1_AHB_ERRID(x) (x)
#define FSPI_STS2 0xE8
#define FSPI_STS2_BREFLOCK BIT(17)
#define FSPI_STS2_BSLVLOCK BIT(16)
#define FSPI_STS2_AREFLOCK BIT(1)
#define FSPI_STS2_ASLVLOCK BIT(0)
#define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \
FSPI_STS2_BSLVLOCK | \
FSPI_STS2_AREFLOCK | \
FSPI_STS2_ASLVLOCK)
#define FSPI_AHBSPNST 0xEC
#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
#define FSPI_AHBSPNST_ACTIVE BIT(0)
#define FSPI_IPRXFSTS 0xF0
#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
#define FSPI_IPRXFSTS_FILL(x) (x)
#define FSPI_IPTXFSTS 0xF4
#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
#define FSPI_IPTXFSTS_FILL(x) (x)
#define FSPI_RFDR 0x100
#define FSPI_TFDR 0x180
#define FSPI_LUT_BASE 0x200
#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
#define FSPI_LUT_REG(idx) \
(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
/* register map end */
/* Instruction set for the LUT register. */
#define LUT_STOP 0x00
#define LUT_CMD 0x01
#define LUT_ADDR 0x02
#define LUT_CADDR_SDR 0x03
#define LUT_MODE 0x04
#define LUT_MODE2 0x05
#define LUT_MODE4 0x06
#define LUT_MODE8 0x07
#define LUT_NXP_WRITE 0x08
#define LUT_NXP_READ 0x09
#define LUT_LEARN_SDR 0x0A
#define LUT_DATSZ_SDR 0x0B
#define LUT_DUMMY 0x0C
#define LUT_DUMMY_RWDS_SDR 0x0D
#define LUT_JMP_ON_CS 0x1F
#define LUT_CMD_DDR 0x21
#define LUT_ADDR_DDR 0x22
#define LUT_CADDR_DDR 0x23
#define LUT_MODE_DDR 0x24
#define LUT_MODE2_DDR 0x25
#define LUT_MODE4_DDR 0x26
#define LUT_MODE8_DDR 0x27
#define LUT_WRITE_DDR 0x28
#define LUT_READ_DDR 0x29
#define LUT_LEARN_DDR 0x2A
#define LUT_DATSZ_DDR 0x2B
#define LUT_DUMMY_DDR 0x2C
#define LUT_DUMMY_RWDS_DDR 0x2D
/*
* Calculate number of required PAD bits for LUT register.
*
* The pad stands for the number of IO lines [0:7].
* For example, the octal read needs eight IO lines,
* so you should use LUT_PAD(8). This macro
* returns 3 i.e. use eight (2^3) IP lines for read.
*/
#define LUT_PAD(x) (fls(x) - 1)
/*
* Macro for constructing the LUT entries with the following
* register layout:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define PAD_SHIFT 8
#define INSTR_SHIFT 10
#define OPRND_SHIFT 16
/* Macros for constructing the LUT register. */
#define LUT_DEF(idx, ins, pad, opr) \
((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
(opr)) << (((idx) % 2) * OPRND_SHIFT))
#define POLL_TOUT 5000
#define NXP_FSPI_MAX_CHIPSELECT 4
#define NXP_FSPI_MIN_IOMAP SZ_4M
#define DCFG_RCWSR1 0x100
#define SYS_PLL_RAT GENMASK(6, 2)
/* Access flash memory using IP bus only */
#define FSPI_QUIRK_USE_IP_ONLY BIT(0)
struct nxp_fspi_devtype_data {
unsigned int rxfifo;
unsigned int txfifo;
unsigned int ahb_buf_size;
unsigned int quirks;
bool little_endian;
};
static struct nxp_fspi_devtype_data lx2160a_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = 0,
.little_endian = true, /* little-endian */
};
static struct nxp_fspi_devtype_data imx8mm_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = 0,
.little_endian = true, /* little-endian */
};
static struct nxp_fspi_devtype_data imx8qxp_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = 0,
.little_endian = true, /* little-endian */
};
static struct nxp_fspi_devtype_data imx8dxl_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = FSPI_QUIRK_USE_IP_ONLY,
.little_endian = true, /* little-endian */
};
struct nxp_fspi {
void __iomem *iobase;
void __iomem *ahb_addr;
u32 memmap_phy;
u32 memmap_phy_size;
u32 memmap_start;
u32 memmap_len;
struct clk *clk, *clk_en;
struct device *dev;
struct completion c;
struct nxp_fspi_devtype_data *devtype_data;
struct mutex lock;
struct pm_qos_request pm_qos_req;
int selected;
};
static inline int needs_ip_only(struct nxp_fspi *f)
{
return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
}
/*
* R/W functions for big- or little-endian registers:
* The FSPI controller's endianness is independent of
* the CPU core's endianness. So far, although the CPU
* core is little-endian the FSPI controller can use
* big-endian or little-endian.
*/
static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
{
if (f->devtype_data->little_endian)
iowrite32(val, addr);
else
iowrite32be(val, addr);
}
static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
{
if (f->devtype_data->little_endian)
return ioread32(addr);
else
return ioread32be(addr);
}
static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
{
struct nxp_fspi *f = dev_id;
u32 reg;
/* clear interrupt */
reg = fspi_readl(f, f->iobase + FSPI_INTR);
fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
if (reg & FSPI_INTR_IPCMDDONE)
complete(&f->c);
return IRQ_HANDLED;
}
static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
{
switch (width) {
case 1:
case 2:
case 4:
case 8:
return 0;
}
return -ENOTSUPP;
}
static bool nxp_fspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
int ret;
ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
if (op->addr.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
if (op->dummy.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
if (op->data.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
if (ret)
return false;
/*
* The number of address bytes should be equal to or less than 4 bytes.
*/
if (op->addr.nbytes > 4)
return false;
/*
* If requested address value is greater than controller assigned
* memory mapped space, return error as it didn't fit in the range
* of assigned address space.
*/
if (op->addr.val >= f->memmap_phy_size)
return false;
/* Max 64 dummy clock cycles supported */
if (op->dummy.buswidth &&
(op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
return false;
/* Max data length, check controller limits and alignment */
if (op->data.dir == SPI_MEM_DATA_IN &&
(op->data.nbytes > f->devtype_data->ahb_buf_size ||
(op->data.nbytes > f->devtype_data->rxfifo - 4 &&
!IS_ALIGNED(op->data.nbytes, 8))))
return false;
if (op->data.dir == SPI_MEM_DATA_OUT &&
op->data.nbytes > f->devtype_data->txfifo)
return false;
return spi_mem_default_supports_op(mem, op);
}
/* Instead of busy looping invoke readl_poll_timeout functionality. */
static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
u32 mask, u32 delay_us,
u32 timeout_us, bool c)
{
u32 reg;
if (!f->devtype_data->little_endian)
mask = (u32)cpu_to_be32(mask);
if (c)
return readl_poll_timeout(base, reg, (reg & mask),
delay_us, timeout_us);
else
return readl_poll_timeout(base, reg, !(reg & mask),
delay_us, timeout_us);
}
/*
* If the target device content being changed by Write/Erase, need to
* invalidate the AHB buffer. This can be achieved by doing the reset
* of controller after setting MCR0[SWRESET] bit.
*/
static inline void nxp_fspi_invalid(struct nxp_fspi *f)
{
u32 reg;
int ret;
reg = fspi_readl(f, f->iobase + FSPI_MCR0);
fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
/* w1c register, wait unit clear */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
WARN_ON(ret);
}
static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
u32 lutval[4] = {};
int lutidx = 1, i;
/* cmd */
lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
op->cmd.opcode);
/* addr bytes */
if (op->addr.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
LUT_PAD(op->addr.buswidth),
op->addr.nbytes * 8);
lutidx++;
}
/* dummy bytes, if needed */
if (op->dummy.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
/*
* Due to FlexSPI controller limitation number of PAD for dummy
* buswidth needs to be programmed as equal to data buswidth.
*/
LUT_PAD(op->data.buswidth),
op->dummy.nbytes * 8 /
op->dummy.buswidth);
lutidx++;
}
/* read/write data bytes */
if (op->data.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx,
op->data.dir == SPI_MEM_DATA_IN ?
LUT_NXP_READ : LUT_NXP_WRITE,
LUT_PAD(op->data.buswidth),
0);
lutidx++;
}
/* stop condition. */
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
/* unlock LUT */
fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
/* fill LUT */
for (i = 0; i < ARRAY_SIZE(lutval); i++)
fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n",
op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
/* lock LUT */
fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
}
static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
{
int ret;
if (is_acpi_node(dev_fwnode(f->dev)))
return 0;
ret = clk_prepare_enable(f->clk_en);
if (ret)
return ret;
ret = clk_prepare_enable(f->clk);
if (ret) {
clk_disable_unprepare(f->clk_en);
return ret;
}
return 0;
}
static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
{
if (is_acpi_node(dev_fwnode(f->dev)))
return 0;
clk_disable_unprepare(f->clk);
clk_disable_unprepare(f->clk_en);
return 0;
}
static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
{
int ret;
/* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
/*
* Enable the DLL calibration mode.
* The delay target for slave delay line is:
* ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
* When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
* means half of clock cycle of reference clock.
*/
fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
f->iobase + FSPI_DLLACR);
fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
f->iobase + FSPI_DLLBCR);
/* Wait to get REF/SLV lock */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
0, POLL_TOUT, true);
if (ret)
dev_warn(f->dev, "DLL lock failed, please fix it!\n");
}
/*
* In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
* register and start base address of the target device.
*
* (Higher address)
* -------- <-- FLSHB2CR0
* | B2 |
* | |
* B2 start address --> -------- <-- FLSHB1CR0
* | B1 |
* | |
* B1 start address --> -------- <-- FLSHA2CR0
* | A2 |
* | |
* A2 start address --> -------- <-- FLSHA1CR0
* | A1 |
* | |
* A1 start address --> -------- (Lower address)
*
*
* Start base address defines the starting address range for given CS and
* FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
*
* But, different targets are having different combinations of number of CS,
* some targets only have single CS or two CS covering controller's full
* memory mapped space area.
* Thus, implementation is being done as independent of the size and number
* of the connected target device.
* Assign controller memory mapped space size as the size to the connected
* target device.
* Mark FLSHxxCR0 as zero initially and then assign value only to the selected
* chip-select Flash configuration register.
*
* For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
* memory mapped size of the controller.
* Value for rest of the CS FLSHxxCR0 register would be zero.
*
*/
static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
{
unsigned long rate = spi->max_speed_hz;
int ret;
uint64_t size_kb;
/*
* Return, if previously selected target device is same as current
* requested target device.
*/
if (f->selected == spi_get_chipselect(spi, 0))
return;
/* Reset FLSHxxCR0 registers */
fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
/* Assign controller memory mapped space as size, KBytes, of flash. */
size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
4 * spi_get_chipselect(spi, 0));
dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
nxp_fspi_clk_disable_unprep(f);
ret = clk_set_rate(f->clk, rate);
if (ret)
return;
ret = nxp_fspi_clk_prep_enable(f);
if (ret)
return;
/*
* If clock rate > 100MHz, then switch from DLL override mode to
* DLL calibration mode.
*/
if (rate > 100000000)
nxp_fspi_dll_calibration(f);
f->selected = spi_get_chipselect(spi, 0);
}
static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
{
u32 start = op->addr.val;
u32 len = op->data.nbytes;
/* if necessary, ioremap before AHB read */
if ((!f->ahb_addr) || start < f->memmap_start ||
start + len > f->memmap_start + f->memmap_len) {
if (f->ahb_addr)
iounmap(f->ahb_addr);
f->memmap_start = start;
f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
len : NXP_FSPI_MIN_IOMAP;
f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
f->memmap_len);
if (!f->ahb_addr) {
dev_err(f->dev, "failed to alloc memory\n");
return -ENOMEM;
}
}
/* Read out the data directly from the AHB buffer. */
memcpy_fromio(op->data.buf.in,
f->ahb_addr + start - f->memmap_start, len);
return 0;
}
static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int i, ret;
u8 *buf = (u8 *) op->data.buf.out;
/* clear the TX FIFO. */
fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
/*
* Default value of water mark level is 8 bytes, hence in single
* write request controller can write max 8 bytes of data.
*/
for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
/* Wait for TXFIFO empty */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPTXWE, 0,
POLL_TOUT, true);
WARN_ON(ret);
fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
}
if (i < op->data.nbytes) {
u32 data = 0;
int j;
/* Wait for TXFIFO empty */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPTXWE, 0,
POLL_TOUT, true);
WARN_ON(ret);
for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
memcpy(&data, buf + i + j, 4);
fspi_writel(f, data, base + FSPI_TFDR + j);
}
fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
}
}
static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int i, ret;
int len = op->data.nbytes;
u8 *buf = (u8 *) op->data.buf.in;
/*
* Default value of water mark level is 8 bytes, hence in single
* read request controller can read max 8 bytes of data.
*/
for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
/* Wait for RXFIFO available */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPRXWA, 0,
POLL_TOUT, true);
WARN_ON(ret);
*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
/* move the FIFO pointer */
fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
}
if (i < len) {
u32 tmp;
int size, j;
buf = op->data.buf.in + i;
/* Wait for RXFIFO available */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPRXWA, 0,
POLL_TOUT, true);
WARN_ON(ret);
len = op->data.nbytes - i;
for (j = 0; j < op->data.nbytes - i; j += 4) {
tmp = fspi_readl(f, base + FSPI_RFDR + j);
size = min(len, 4);
memcpy(buf + j, &tmp, size);
len -= size;
}
}
/* invalid the RXFIFO */
fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
/* move the FIFO pointer */
fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
}
static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int seqnum = 0;
int err = 0;
u32 reg;
reg = fspi_readl(f, base + FSPI_IPRXFCR);
/* invalid RXFIFO first */
reg &= ~FSPI_IPRXFCR_DMA_EN;
reg = reg | FSPI_IPRXFCR_CLR;
fspi_writel(f, reg, base + FSPI_IPRXFCR);
init_completion(&f->c);
fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
/*
* Always start the sequence at the same index since we update
* the LUT at each exec_op() call. And also specify the DATA
* length, since it's has not been specified in the LUT.
*/
fspi_writel(f, op->data.nbytes |
(SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
(seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
base + FSPI_IPCR1);
/* Trigger the LUT now. */
fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
/* Wait for the interrupt. */
if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
err = -ETIMEDOUT;
/* Invoke IP data read, if request is of data read. */
if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
nxp_fspi_read_rxfifo(f, op);
return err;
}
static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
int err = 0;
mutex_lock(&f->lock);
/* Wait for controller being ready. */
err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
WARN_ON(err);
nxp_fspi_select_mem(f, mem->spi);
nxp_fspi_prepare_lut(f, op);
/*
* If we have large chunks of data, we read them through the AHB bus by
* accessing the mapped memory. In all other cases we use IP commands
* to access the flash. Read via AHB bus may be corrupted due to
* existence of an errata and therefore discard AHB read in such cases.
*/
if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
op->data.dir == SPI_MEM_DATA_IN &&
!needs_ip_only(f)) {
err = nxp_fspi_read_ahb(f, op);
} else {
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
nxp_fspi_fill_txfifo(f, op);
err = nxp_fspi_do_op(f, op);
}
/* Invalidate the data in the AHB buffer. */
nxp_fspi_invalid(f);
mutex_unlock(&f->lock);
return err;
}
static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
if (op->data.dir == SPI_MEM_DATA_OUT) {
if (op->data.nbytes > f->devtype_data->txfifo)
op->data.nbytes = f->devtype_data->txfifo;
} else {
if (op->data.nbytes > f->devtype_data->ahb_buf_size)
op->data.nbytes = f->devtype_data->ahb_buf_size;
else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
}
/* Limit data bytes to RX FIFO in case of IP read only */
if (op->data.dir == SPI_MEM_DATA_IN &&
needs_ip_only(f) &&
op->data.nbytes > f->devtype_data->rxfifo)
op->data.nbytes = f->devtype_data->rxfifo;
return 0;
}
static void erratum_err050568(struct nxp_fspi *f)
{
static const struct soc_device_attribute ls1028a_soc_attr[] = {
{ .family = "QorIQ LS1028A" },
{ /* sentinel */ }
};
struct regmap *map;
u32 val, sys_pll_ratio;
int ret;
/* Check for LS1028A family */
if (!soc_device_match(ls1028a_soc_attr)) {
dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
return;
}
map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
if (IS_ERR(map)) {
dev_err(f->dev, "No syscon regmap\n");
goto err;
}
ret = regmap_read(map, DCFG_RCWSR1, &val);
if (ret < 0)
goto err;
sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
/* Use IP bus only if platform clock is 300MHz */
if (sys_pll_ratio == 3)
f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
return;
err:
dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
}
static int nxp_fspi_default_setup(struct nxp_fspi *f)
{
void __iomem *base = f->iobase;
int ret, i;
u32 reg;
/* disable and unprepare clock to avoid glitch pass to controller */
nxp_fspi_clk_disable_unprep(f);
/* the default frequency, we will change it later if necessary. */
ret = clk_set_rate(f->clk, 20000000);
if (ret)
return ret;
ret = nxp_fspi_clk_prep_enable(f);
if (ret)
return ret;
/*
* ERR050568: Flash access by FlexSPI AHB command may not work with
* platform frequency equal to 300 MHz on LS1028A.
* LS1028A reuses LX2160A compatible entry. Make errata applicable for
* Layerscape LS1028A platform.
*/
if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
erratum_err050568(f);
/* Reset the module */
/* w1c register, wait unit clear */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
WARN_ON(ret);
/* Disable the module */
fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
/*
* Config the DLL register to default value, enable the target clock delay
* line delay cell override mode, and use 1 fixed delay cell in DLL delay
* chain, this is the suggested setting when clock rate < 100MHz.
*/
fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
/* enable module */
fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
base + FSPI_MCR0);
/*
* Disable same device enable bit and configure all target devices
* independently.
*/
reg = fspi_readl(f, f->iobase + FSPI_MCR2);
reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
fspi_writel(f, reg, base + FSPI_MCR2);
/* AHB configuration for access buffer 0~7. */
for (i = 0; i < 7; i++)
fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
/*
* Set ADATSZ with the maximum AHB buffer size to improve the read
* performance.
*/
fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
/* prefetch and no start address alignment limitation */
fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
base + FSPI_AHBCR);
/* Reset the FLSHxCR1 registers. */
reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
/* AHB Read - Set lut sequence ID for all CS. */
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
f->selected = -1;
/* enable the interrupt */
fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
return 0;
}
static const char *nxp_fspi_get_name(struct spi_mem *mem)
{
struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
struct device *dev = &mem->spi->dev;
const char *name;
// Set custom name derived from the platform_device of the controller.
if (of_get_available_child_count(f->dev->of_node) == 1)
return dev_name(f->dev);
name = devm_kasprintf(dev, GFP_KERNEL,
"%s-%d", dev_name(f->dev),
spi_get_chipselect(mem->spi, 0));
if (!name) {
dev_err(dev, "failed to get memory for custom flash name\n");
return ERR_PTR(-ENOMEM);
}
return name;
}
static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
.adjust_op_size = nxp_fspi_adjust_op_size,
.supports_op = nxp_fspi_supports_op,
.exec_op = nxp_fspi_exec_op,
.get_name = nxp_fspi_get_name,
};
static int nxp_fspi_probe(struct platform_device *pdev)
{
struct spi_controller *ctlr;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct resource *res;
struct nxp_fspi *f;
int ret;
u32 reg;
ctlr = spi_alloc_host(&pdev->dev, sizeof(*f));
if (!ctlr)
return -ENOMEM;
ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
f = spi_controller_get_devdata(ctlr);
f->dev = dev;
f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
if (!f->devtype_data) {
ret = -ENODEV;
goto err_put_ctrl;
}
platform_set_drvdata(pdev, f);
/* find the resources - configuration register address space */
if (is_acpi_node(dev_fwnode(f->dev)))
f->iobase = devm_platform_ioremap_resource(pdev, 0);
else
f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
if (IS_ERR(f->iobase)) {
ret = PTR_ERR(f->iobase);
goto err_put_ctrl;
}
/* find the resources - controller memory mapped space */
if (is_acpi_node(dev_fwnode(f->dev)))
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
else
res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "fspi_mmap");
if (!res) {
ret = -ENODEV;
goto err_put_ctrl;
}
/* assign memory mapped starting address and mapped size. */
f->memmap_phy = res->start;
f->memmap_phy_size = resource_size(res);
/* find the clocks */
if (dev_of_node(&pdev->dev)) {
f->clk_en = devm_clk_get(dev, "fspi_en");
if (IS_ERR(f->clk_en)) {
ret = PTR_ERR(f->clk_en);
goto err_put_ctrl;
}
f->clk = devm_clk_get(dev, "fspi");
if (IS_ERR(f->clk)) {
ret = PTR_ERR(f->clk);
goto err_put_ctrl;
}
ret = nxp_fspi_clk_prep_enable(f);
if (ret) {
dev_err(dev, "can not enable the clock\n");
goto err_put_ctrl;
}
}
/* Clear potential interrupts */
reg = fspi_readl(f, f->iobase + FSPI_INTR);
if (reg)
fspi_writel(f, reg, f->iobase + FSPI_INTR);
/* find the irq */
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto err_disable_clk;
ret = devm_request_irq(dev, ret,
nxp_fspi_irq_handler, 0, pdev->name, f);
if (ret) {
dev_err(dev, "failed to request irq: %d\n", ret);
goto err_disable_clk;
}
mutex_init(&f->lock);
ctlr->bus_num = -1;
ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
ctlr->mem_ops = &nxp_fspi_mem_ops;
nxp_fspi_default_setup(f);
ctlr->dev.of_node = np;
ret = devm_spi_register_controller(&pdev->dev, ctlr);
if (ret)
goto err_destroy_mutex;
return 0;
err_destroy_mutex:
mutex_destroy(&f->lock);
err_disable_clk:
nxp_fspi_clk_disable_unprep(f);
err_put_ctrl:
spi_controller_put(ctlr);
dev_err(dev, "NXP FSPI probe failed\n");
return ret;
}
static void nxp_fspi_remove(struct platform_device *pdev)
{
struct nxp_fspi *f = platform_get_drvdata(pdev);
/* disable the hardware */
fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
nxp_fspi_clk_disable_unprep(f);
mutex_destroy(&f->lock);
if (f->ahb_addr)
iounmap(f->ahb_addr);
}
static int nxp_fspi_suspend(struct device *dev)
{
return 0;
}
static int nxp_fspi_resume(struct device *dev)
{
struct nxp_fspi *f = dev_get_drvdata(dev);
nxp_fspi_default_setup(f);
return 0;
}
static const struct of_device_id nxp_fspi_dt_ids[] = {
{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
#ifdef CONFIG_ACPI
static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
{}
};
MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
#endif
static const struct dev_pm_ops nxp_fspi_pm_ops = {
.suspend = nxp_fspi_suspend,
.resume = nxp_fspi_resume,
};
static struct platform_driver nxp_fspi_driver = {
.driver = {
.name = "nxp-fspi",
.of_match_table = nxp_fspi_dt_ids,
.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
.pm = &nxp_fspi_pm_ops,
},
.probe = nxp_fspi_probe,
.remove_new = nxp_fspi_remove,
};
module_platform_driver(nxp_fspi_driver);
MODULE_DESCRIPTION("NXP FSPI Controller Driver");
MODULE_AUTHOR("NXP Semiconductor");
MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
MODULE_LICENSE("GPL v2");