kernel-aes67/drivers/pci/of.c

789 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* PCI <-> OF mapping helpers
*
* Copyright 2011 IBM Corp.
*/
#define pr_fmt(fmt) "PCI: OF: " fmt
#include <linux/irqdomain.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_pci.h>
#include "pci.h"
#ifdef CONFIG_PCI
/**
* pci_set_of_node - Find and set device's DT device_node
* @dev: the PCI device structure to fill
*
* Returns 0 on success with of_node set or when no device is described in the
* DT. Returns -ENODEV if the device is present, but disabled in the DT.
*/
int pci_set_of_node(struct pci_dev *dev)
{
struct device_node *node;
if (!dev->bus->dev.of_node)
return 0;
node = of_pci_find_child_device(dev->bus->dev.of_node, dev->devfn);
if (!node)
return 0;
device_set_node(&dev->dev, of_fwnode_handle(node));
return 0;
}
void pci_release_of_node(struct pci_dev *dev)
{
of_node_put(dev->dev.of_node);
device_set_node(&dev->dev, NULL);
}
void pci_set_bus_of_node(struct pci_bus *bus)
{
struct device_node *node;
if (bus->self == NULL) {
node = pcibios_get_phb_of_node(bus);
} else {
node = of_node_get(bus->self->dev.of_node);
if (node && of_property_read_bool(node, "external-facing"))
bus->self->external_facing = true;
}
device_set_node(&bus->dev, of_fwnode_handle(node));
}
void pci_release_bus_of_node(struct pci_bus *bus)
{
of_node_put(bus->dev.of_node);
device_set_node(&bus->dev, NULL);
}
struct device_node * __weak pcibios_get_phb_of_node(struct pci_bus *bus)
{
/* This should only be called for PHBs */
if (WARN_ON(bus->self || bus->parent))
return NULL;
/*
* Look for a node pointer in either the intermediary device we
* create above the root bus or its own parent. Normally only
* the later is populated.
*/
if (bus->bridge->of_node)
return of_node_get(bus->bridge->of_node);
if (bus->bridge->parent && bus->bridge->parent->of_node)
return of_node_get(bus->bridge->parent->of_node);
return NULL;
}
struct irq_domain *pci_host_bridge_of_msi_domain(struct pci_bus *bus)
{
#ifdef CONFIG_IRQ_DOMAIN
struct irq_domain *d;
if (!bus->dev.of_node)
return NULL;
/* Start looking for a phandle to an MSI controller. */
d = of_msi_get_domain(&bus->dev, bus->dev.of_node, DOMAIN_BUS_PCI_MSI);
if (d)
return d;
/*
* If we don't have an msi-parent property, look for a domain
* directly attached to the host bridge.
*/
d = irq_find_matching_host(bus->dev.of_node, DOMAIN_BUS_PCI_MSI);
if (d)
return d;
return irq_find_host(bus->dev.of_node);
#else
return NULL;
#endif
}
bool pci_host_of_has_msi_map(struct device *dev)
{
if (dev && dev->of_node)
return of_get_property(dev->of_node, "msi-map", NULL);
return false;
}
static inline int __of_pci_pci_compare(struct device_node *node,
unsigned int data)
{
int devfn;
devfn = of_pci_get_devfn(node);
if (devfn < 0)
return 0;
return devfn == data;
}
struct device_node *of_pci_find_child_device(struct device_node *parent,
unsigned int devfn)
{
struct device_node *node, *node2;
for_each_child_of_node(parent, node) {
if (__of_pci_pci_compare(node, devfn))
return node;
/*
* Some OFs create a parent node "multifunc-device" as
* a fake root for all functions of a multi-function
* device we go down them as well.
*/
if (of_node_name_eq(node, "multifunc-device")) {
for_each_child_of_node(node, node2) {
if (__of_pci_pci_compare(node2, devfn)) {
of_node_put(node);
return node2;
}
}
}
}
return NULL;
}
EXPORT_SYMBOL_GPL(of_pci_find_child_device);
/**
* of_pci_get_devfn() - Get device and function numbers for a device node
* @np: device node
*
* Parses a standard 5-cell PCI resource and returns an 8-bit value that can
* be passed to the PCI_SLOT() and PCI_FUNC() macros to extract the device
* and function numbers respectively. On error a negative error code is
* returned.
*/
int of_pci_get_devfn(struct device_node *np)
{
u32 reg[5];
int error;
error = of_property_read_u32_array(np, "reg", reg, ARRAY_SIZE(reg));
if (error)
return error;
return (reg[0] >> 8) & 0xff;
}
EXPORT_SYMBOL_GPL(of_pci_get_devfn);
/**
* of_pci_parse_bus_range() - parse the bus-range property of a PCI device
* @node: device node
* @res: address to a struct resource to return the bus-range
*
* Returns 0 on success or a negative error-code on failure.
*/
int of_pci_parse_bus_range(struct device_node *node, struct resource *res)
{
u32 bus_range[2];
int error;
error = of_property_read_u32_array(node, "bus-range", bus_range,
ARRAY_SIZE(bus_range));
if (error)
return error;
res->name = node->name;
res->start = bus_range[0];
res->end = bus_range[1];
res->flags = IORESOURCE_BUS;
return 0;
}
EXPORT_SYMBOL_GPL(of_pci_parse_bus_range);
/**
* of_get_pci_domain_nr - Find the host bridge domain number
* of the given device node.
* @node: Device tree node with the domain information.
*
* This function will try to obtain the host bridge domain number by finding
* a property called "linux,pci-domain" of the given device node.
*
* Return:
* * > 0 - On success, an associated domain number.
* * -EINVAL - The property "linux,pci-domain" does not exist.
* * -ENODATA - The linux,pci-domain" property does not have value.
* * -EOVERFLOW - Invalid "linux,pci-domain" property value.
*
* Returns the associated domain number from DT in the range [0-0xffff], or
* a negative value if the required property is not found.
*/
int of_get_pci_domain_nr(struct device_node *node)
{
u32 domain;
int error;
error = of_property_read_u32(node, "linux,pci-domain", &domain);
if (error)
return error;
return (u16)domain;
}
EXPORT_SYMBOL_GPL(of_get_pci_domain_nr);
/**
* of_pci_check_probe_only - Setup probe only mode if linux,pci-probe-only
* is present and valid
*/
void of_pci_check_probe_only(void)
{
u32 val;
int ret;
ret = of_property_read_u32(of_chosen, "linux,pci-probe-only", &val);
if (ret) {
if (ret == -ENODATA || ret == -EOVERFLOW)
pr_warn("linux,pci-probe-only without valid value, ignoring\n");
return;
}
if (val)
pci_add_flags(PCI_PROBE_ONLY);
else
pci_clear_flags(PCI_PROBE_ONLY);
pr_info("PROBE_ONLY %s\n", val ? "enabled" : "disabled");
}
EXPORT_SYMBOL_GPL(of_pci_check_probe_only);
/**
* devm_of_pci_get_host_bridge_resources() - Resource-managed parsing of PCI
* host bridge resources from DT
* @dev: host bridge device
* @busno: bus number associated with the bridge root bus
* @bus_max: maximum number of buses for this bridge
* @resources: list where the range of resources will be added after DT parsing
* @ib_resources: list where the range of inbound resources (with addresses
* from 'dma-ranges') will be added after DT parsing
* @io_base: pointer to a variable that will contain on return the physical
* address for the start of the I/O range. Can be NULL if the caller doesn't
* expect I/O ranges to be present in the device tree.
*
* This function will parse the "ranges" property of a PCI host bridge device
* node and setup the resource mapping based on its content. It is expected
* that the property conforms with the Power ePAPR document.
*
* It returns zero if the range parsing has been successful or a standard error
* value if it failed.
*/
static int devm_of_pci_get_host_bridge_resources(struct device *dev,
unsigned char busno, unsigned char bus_max,
struct list_head *resources,
struct list_head *ib_resources,
resource_size_t *io_base)
{
struct device_node *dev_node = dev->of_node;
struct resource *res, tmp_res;
struct resource *bus_range;
struct of_pci_range range;
struct of_pci_range_parser parser;
const char *range_type;
int err;
if (io_base)
*io_base = (resource_size_t)OF_BAD_ADDR;
bus_range = devm_kzalloc(dev, sizeof(*bus_range), GFP_KERNEL);
if (!bus_range)
return -ENOMEM;
dev_info(dev, "host bridge %pOF ranges:\n", dev_node);
err = of_pci_parse_bus_range(dev_node, bus_range);
if (err) {
bus_range->start = busno;
bus_range->end = bus_max;
bus_range->flags = IORESOURCE_BUS;
dev_info(dev, " No bus range found for %pOF, using %pR\n",
dev_node, bus_range);
} else {
if (bus_range->end > bus_range->start + bus_max)
bus_range->end = bus_range->start + bus_max;
}
pci_add_resource(resources, bus_range);
/* Check for ranges property */
err = of_pci_range_parser_init(&parser, dev_node);
if (err)
return 0;
dev_dbg(dev, "Parsing ranges property...\n");
for_each_of_pci_range(&parser, &range) {
/* Read next ranges element */
if ((range.flags & IORESOURCE_TYPE_BITS) == IORESOURCE_IO)
range_type = "IO";
else if ((range.flags & IORESOURCE_TYPE_BITS) == IORESOURCE_MEM)
range_type = "MEM";
else
range_type = "err";
dev_info(dev, " %6s %#012llx..%#012llx -> %#012llx\n",
range_type, range.cpu_addr,
range.cpu_addr + range.size - 1, range.pci_addr);
/*
* If we failed translation or got a zero-sized region
* then skip this range
*/
if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
continue;
err = of_pci_range_to_resource(&range, dev_node, &tmp_res);
if (err)
continue;
res = devm_kmemdup(dev, &tmp_res, sizeof(tmp_res), GFP_KERNEL);
if (!res) {
err = -ENOMEM;
goto failed;
}
if (resource_type(res) == IORESOURCE_IO) {
if (!io_base) {
dev_err(dev, "I/O range found for %pOF. Please provide an io_base pointer to save CPU base address\n",
dev_node);
err = -EINVAL;
goto failed;
}
if (*io_base != (resource_size_t)OF_BAD_ADDR)
dev_warn(dev, "More than one I/O resource converted for %pOF. CPU base address for old range lost!\n",
dev_node);
*io_base = range.cpu_addr;
} else if (resource_type(res) == IORESOURCE_MEM) {
res->flags &= ~IORESOURCE_MEM_64;
}
pci_add_resource_offset(resources, res, res->start - range.pci_addr);
}
/* Check for dma-ranges property */
if (!ib_resources)
return 0;
err = of_pci_dma_range_parser_init(&parser, dev_node);
if (err)
return 0;
dev_dbg(dev, "Parsing dma-ranges property...\n");
for_each_of_pci_range(&parser, &range) {
/*
* If we failed translation or got a zero-sized region
* then skip this range
*/
if (((range.flags & IORESOURCE_TYPE_BITS) != IORESOURCE_MEM) ||
range.cpu_addr == OF_BAD_ADDR || range.size == 0)
continue;
dev_info(dev, " %6s %#012llx..%#012llx -> %#012llx\n",
"IB MEM", range.cpu_addr,
range.cpu_addr + range.size - 1, range.pci_addr);
err = of_pci_range_to_resource(&range, dev_node, &tmp_res);
if (err)
continue;
res = devm_kmemdup(dev, &tmp_res, sizeof(tmp_res), GFP_KERNEL);
if (!res) {
err = -ENOMEM;
goto failed;
}
pci_add_resource_offset(ib_resources, res,
res->start - range.pci_addr);
}
return 0;
failed:
pci_free_resource_list(resources);
return err;
}
#if IS_ENABLED(CONFIG_OF_IRQ)
/**
* of_irq_parse_pci - Resolve the interrupt for a PCI device
* @pdev: the device whose interrupt is to be resolved
* @out_irq: structure of_phandle_args filled by this function
*
* This function resolves the PCI interrupt for a given PCI device. If a
* device-node exists for a given pci_dev, it will use normal OF tree
* walking. If not, it will implement standard swizzling and walk up the
* PCI tree until an device-node is found, at which point it will finish
* resolving using the OF tree walking.
*/
static int of_irq_parse_pci(const struct pci_dev *pdev, struct of_phandle_args *out_irq)
{
struct device_node *dn, *ppnode = NULL;
struct pci_dev *ppdev;
__be32 laddr[3];
u8 pin;
int rc;
/*
* Check if we have a device node, if yes, fallback to standard
* device tree parsing
*/
dn = pci_device_to_OF_node(pdev);
if (dn) {
rc = of_irq_parse_one(dn, 0, out_irq);
if (!rc)
return rc;
}
/*
* Ok, we don't, time to have fun. Let's start by building up an
* interrupt spec. we assume #interrupt-cells is 1, which is standard
* for PCI. If you do different, then don't use that routine.
*/
rc = pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pin);
if (rc != 0)
goto err;
/* No pin, exit with no error message. */
if (pin == 0)
return -ENODEV;
/* Local interrupt-map in the device node? Use it! */
if (of_property_present(dn, "interrupt-map")) {
pin = pci_swizzle_interrupt_pin(pdev, pin);
ppnode = dn;
}
/* Now we walk up the PCI tree */
while (!ppnode) {
/* Get the pci_dev of our parent */
ppdev = pdev->bus->self;
/* Ouch, it's a host bridge... */
if (ppdev == NULL) {
ppnode = pci_bus_to_OF_node(pdev->bus);
/* No node for host bridge ? give up */
if (ppnode == NULL) {
rc = -EINVAL;
goto err;
}
} else {
/* We found a P2P bridge, check if it has a node */
ppnode = pci_device_to_OF_node(ppdev);
}
/*
* Ok, we have found a parent with a device-node, hand over to
* the OF parsing code.
* We build a unit address from the linux device to be used for
* resolution. Note that we use the linux bus number which may
* not match your firmware bus numbering.
* Fortunately, in most cases, interrupt-map-mask doesn't
* include the bus number as part of the matching.
* You should still be careful about that though if you intend
* to rely on this function (you ship a firmware that doesn't
* create device nodes for all PCI devices).
*/
if (ppnode)
break;
/*
* We can only get here if we hit a P2P bridge with no node;
* let's do standard swizzling and try again
*/
pin = pci_swizzle_interrupt_pin(pdev, pin);
pdev = ppdev;
}
out_irq->np = ppnode;
out_irq->args_count = 1;
out_irq->args[0] = pin;
laddr[0] = cpu_to_be32((pdev->bus->number << 16) | (pdev->devfn << 8));
laddr[1] = laddr[2] = cpu_to_be32(0);
rc = of_irq_parse_raw(laddr, out_irq);
if (rc)
goto err;
return 0;
err:
if (rc == -ENOENT) {
dev_warn(&pdev->dev,
"%s: no interrupt-map found, INTx interrupts not available\n",
__func__);
pr_warn_once("%s: possibly some PCI slots don't have level triggered interrupts capability\n",
__func__);
} else {
dev_err(&pdev->dev, "%s: failed with rc=%d\n", __func__, rc);
}
return rc;
}
/**
* of_irq_parse_and_map_pci() - Decode a PCI IRQ from the device tree and map to a VIRQ
* @dev: The PCI device needing an IRQ
* @slot: PCI slot number; passed when used as map_irq callback. Unused
* @pin: PCI IRQ pin number; passed when used as map_irq callback. Unused
*
* @slot and @pin are unused, but included in the function so that this
* function can be used directly as the map_irq callback to
* pci_assign_irq() and struct pci_host_bridge.map_irq pointer
*/
int of_irq_parse_and_map_pci(const struct pci_dev *dev, u8 slot, u8 pin)
{
struct of_phandle_args oirq;
int ret;
ret = of_irq_parse_pci(dev, &oirq);
if (ret)
return 0; /* Proper return code 0 == NO_IRQ */
return irq_create_of_mapping(&oirq);
}
EXPORT_SYMBOL_GPL(of_irq_parse_and_map_pci);
#endif /* CONFIG_OF_IRQ */
static int pci_parse_request_of_pci_ranges(struct device *dev,
struct pci_host_bridge *bridge)
{
int err, res_valid = 0;
resource_size_t iobase;
struct resource_entry *win, *tmp;
INIT_LIST_HEAD(&bridge->windows);
INIT_LIST_HEAD(&bridge->dma_ranges);
err = devm_of_pci_get_host_bridge_resources(dev, 0, 0xff, &bridge->windows,
&bridge->dma_ranges, &iobase);
if (err)
return err;
err = devm_request_pci_bus_resources(dev, &bridge->windows);
if (err)
return err;
resource_list_for_each_entry_safe(win, tmp, &bridge->windows) {
struct resource *res = win->res;
switch (resource_type(res)) {
case IORESOURCE_IO:
err = devm_pci_remap_iospace(dev, res, iobase);
if (err) {
dev_warn(dev, "error %d: failed to map resource %pR\n",
err, res);
resource_list_destroy_entry(win);
}
break;
case IORESOURCE_MEM:
res_valid |= !(res->flags & IORESOURCE_PREFETCH);
if (!(res->flags & IORESOURCE_PREFETCH))
if (upper_32_bits(resource_size(res)))
dev_warn(dev, "Memory resource size exceeds max for 32 bits\n");
break;
}
}
if (!res_valid)
dev_warn(dev, "non-prefetchable memory resource required\n");
return 0;
}
int devm_of_pci_bridge_init(struct device *dev, struct pci_host_bridge *bridge)
{
if (!dev->of_node)
return 0;
bridge->swizzle_irq = pci_common_swizzle;
bridge->map_irq = of_irq_parse_and_map_pci;
return pci_parse_request_of_pci_ranges(dev, bridge);
}
#ifdef CONFIG_PCI_DYNAMIC_OF_NODES
void of_pci_remove_node(struct pci_dev *pdev)
{
struct device_node *np;
np = pci_device_to_OF_node(pdev);
if (!np || !of_node_check_flag(np, OF_DYNAMIC))
return;
pdev->dev.of_node = NULL;
of_changeset_revert(np->data);
of_changeset_destroy(np->data);
of_node_put(np);
}
void of_pci_make_dev_node(struct pci_dev *pdev)
{
struct device_node *ppnode, *np = NULL;
const char *pci_type;
struct of_changeset *cset;
const char *name;
int ret;
/*
* If there is already a device tree node linked to this device,
* return immediately.
*/
if (pci_device_to_OF_node(pdev))
return;
/* Check if there is device tree node for parent device */
if (!pdev->bus->self)
ppnode = pdev->bus->dev.of_node;
else
ppnode = pdev->bus->self->dev.of_node;
if (!ppnode)
return;
if (pci_is_bridge(pdev))
pci_type = "pci";
else
pci_type = "dev";
name = kasprintf(GFP_KERNEL, "%s@%x,%x", pci_type,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
if (!name)
return;
cset = kmalloc(sizeof(*cset), GFP_KERNEL);
if (!cset)
goto out_free_name;
of_changeset_init(cset);
np = of_changeset_create_node(cset, ppnode, name);
if (!np)
goto out_destroy_cset;
ret = of_pci_add_properties(pdev, cset, np);
if (ret)
goto out_free_node;
ret = of_changeset_apply(cset);
if (ret)
goto out_free_node;
np->data = cset;
pdev->dev.of_node = np;
kfree(name);
return;
out_free_node:
of_node_put(np);
out_destroy_cset:
of_changeset_destroy(cset);
kfree(cset);
out_free_name:
kfree(name);
}
#endif
#endif /* CONFIG_PCI */
/**
* of_pci_get_max_link_speed - Find the maximum link speed of the given device node.
* @node: Device tree node with the maximum link speed information.
*
* This function will try to find the limitation of link speed by finding
* a property called "max-link-speed" of the given device node.
*
* Return:
* * > 0 - On success, a maximum link speed.
* * -EINVAL - Invalid "max-link-speed" property value, or failure to access
* the property of the device tree node.
*
* Returns the associated max link speed from DT, or a negative value if the
* required property is not found or is invalid.
*/
int of_pci_get_max_link_speed(struct device_node *node)
{
u32 max_link_speed;
if (of_property_read_u32(node, "max-link-speed", &max_link_speed) ||
max_link_speed == 0 || max_link_speed > 4)
return -EINVAL;
return max_link_speed;
}
EXPORT_SYMBOL_GPL(of_pci_get_max_link_speed);
/**
* of_pci_get_slot_power_limit - Parses the "slot-power-limit-milliwatt"
* property.
*
* @node: device tree node with the slot power limit information
* @slot_power_limit_value: pointer where the value should be stored in PCIe
* Slot Capabilities Register format
* @slot_power_limit_scale: pointer where the scale should be stored in PCIe
* Slot Capabilities Register format
*
* Returns the slot power limit in milliwatts and if @slot_power_limit_value
* and @slot_power_limit_scale pointers are non-NULL, fills in the value and
* scale in format used by PCIe Slot Capabilities Register.
*
* If the property is not found or is invalid, returns 0.
*/
u32 of_pci_get_slot_power_limit(struct device_node *node,
u8 *slot_power_limit_value,
u8 *slot_power_limit_scale)
{
u32 slot_power_limit_mw;
u8 value, scale;
if (of_property_read_u32(node, "slot-power-limit-milliwatt",
&slot_power_limit_mw))
slot_power_limit_mw = 0;
/* Calculate Slot Power Limit Value and Slot Power Limit Scale */
if (slot_power_limit_mw == 0) {
value = 0x00;
scale = 0;
} else if (slot_power_limit_mw <= 255) {
value = slot_power_limit_mw;
scale = 3;
} else if (slot_power_limit_mw <= 255*10) {
value = slot_power_limit_mw / 10;
scale = 2;
slot_power_limit_mw = slot_power_limit_mw / 10 * 10;
} else if (slot_power_limit_mw <= 255*100) {
value = slot_power_limit_mw / 100;
scale = 1;
slot_power_limit_mw = slot_power_limit_mw / 100 * 100;
} else if (slot_power_limit_mw <= 239*1000) {
value = slot_power_limit_mw / 1000;
scale = 0;
slot_power_limit_mw = slot_power_limit_mw / 1000 * 1000;
} else if (slot_power_limit_mw < 250*1000) {
value = 0xEF;
scale = 0;
slot_power_limit_mw = 239*1000;
} else if (slot_power_limit_mw <= 600*1000) {
value = 0xF0 + (slot_power_limit_mw / 1000 - 250) / 25;
scale = 0;
slot_power_limit_mw = slot_power_limit_mw / (1000*25) * (1000*25);
} else {
value = 0xFE;
scale = 0;
slot_power_limit_mw = 600*1000;
}
if (slot_power_limit_value)
*slot_power_limit_value = value;
if (slot_power_limit_scale)
*slot_power_limit_scale = scale;
return slot_power_limit_mw;
}
EXPORT_SYMBOL_GPL(of_pci_get_slot_power_limit);