kernel-aes67/arch/loongarch/kernel/kgdb.c

728 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* LoongArch KGDB support
*
* Copyright (C) 2023 Loongson Technology Corporation Limited
*/
#include <linux/hw_breakpoint.h>
#include <linux/kdebug.h>
#include <linux/kgdb.h>
#include <linux/processor.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <asm/cacheflush.h>
#include <asm/fpu.h>
#include <asm/hw_breakpoint.h>
#include <asm/inst.h>
#include <asm/irq_regs.h>
#include <asm/ptrace.h>
#include <asm/sigcontext.h>
int kgdb_watch_activated;
static unsigned int stepped_opcode;
static unsigned long stepped_address;
struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
{ "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
{ "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
{ "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
{ "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
{ "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
{ "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
{ "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
{ "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
{ "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
{ "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
{ "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
{ "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
{ "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
{ "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
{ "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
{ "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
{ "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) },
{ "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) },
{ "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) },
{ "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) },
{ "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) },
{ "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) },
{ "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) },
{ "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) },
{ "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) },
{ "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) },
{ "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) },
{ "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) },
{ "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) },
{ "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) },
{ "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) },
{ "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) },
{ "orig_a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, orig_a0) },
{ "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_era) },
{ "badv", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_badvaddr) },
{ "f0", GDB_SIZEOF_REG, 0 },
{ "f1", GDB_SIZEOF_REG, 1 },
{ "f2", GDB_SIZEOF_REG, 2 },
{ "f3", GDB_SIZEOF_REG, 3 },
{ "f4", GDB_SIZEOF_REG, 4 },
{ "f5", GDB_SIZEOF_REG, 5 },
{ "f6", GDB_SIZEOF_REG, 6 },
{ "f7", GDB_SIZEOF_REG, 7 },
{ "f8", GDB_SIZEOF_REG, 8 },
{ "f9", GDB_SIZEOF_REG, 9 },
{ "f10", GDB_SIZEOF_REG, 10 },
{ "f11", GDB_SIZEOF_REG, 11 },
{ "f12", GDB_SIZEOF_REG, 12 },
{ "f13", GDB_SIZEOF_REG, 13 },
{ "f14", GDB_SIZEOF_REG, 14 },
{ "f15", GDB_SIZEOF_REG, 15 },
{ "f16", GDB_SIZEOF_REG, 16 },
{ "f17", GDB_SIZEOF_REG, 17 },
{ "f18", GDB_SIZEOF_REG, 18 },
{ "f19", GDB_SIZEOF_REG, 19 },
{ "f20", GDB_SIZEOF_REG, 20 },
{ "f21", GDB_SIZEOF_REG, 21 },
{ "f22", GDB_SIZEOF_REG, 22 },
{ "f23", GDB_SIZEOF_REG, 23 },
{ "f24", GDB_SIZEOF_REG, 24 },
{ "f25", GDB_SIZEOF_REG, 25 },
{ "f26", GDB_SIZEOF_REG, 26 },
{ "f27", GDB_SIZEOF_REG, 27 },
{ "f28", GDB_SIZEOF_REG, 28 },
{ "f29", GDB_SIZEOF_REG, 29 },
{ "f30", GDB_SIZEOF_REG, 30 },
{ "f31", GDB_SIZEOF_REG, 31 },
{ "fcc0", 1, 0 },
{ "fcc1", 1, 1 },
{ "fcc2", 1, 2 },
{ "fcc3", 1, 3 },
{ "fcc4", 1, 4 },
{ "fcc5", 1, 5 },
{ "fcc6", 1, 6 },
{ "fcc7", 1, 7 },
{ "fcsr", 4, 0 },
};
char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
{
int reg_offset, reg_size;
if (regno < 0 || regno >= DBG_MAX_REG_NUM)
return NULL;
reg_offset = dbg_reg_def[regno].offset;
reg_size = dbg_reg_def[regno].size;
if (reg_offset == -1)
goto out;
/* Handle general-purpose/orig_a0/pc/badv registers */
if (regno <= DBG_PT_REGS_END) {
memcpy(mem, (void *)regs + reg_offset, reg_size);
goto out;
}
if (!(regs->csr_euen & CSR_EUEN_FPEN))
goto out;
save_fp(current);
/* Handle FP registers */
switch (regno) {
case DBG_FCSR: /* Process the fcsr */
memcpy(mem, (void *)&current->thread.fpu.fcsr, reg_size);
break;
case DBG_FCC_BASE ... DBG_FCC_END: /* Process the fcc */
memcpy(mem, (void *)&current->thread.fpu.fcc + reg_offset, reg_size);
break;
case DBG_FPR_BASE ... DBG_FPR_END: /* Process the fpr */
memcpy(mem, (void *)&current->thread.fpu.fpr[reg_offset], reg_size);
break;
default:
break;
}
out:
return dbg_reg_def[regno].name;
}
int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
{
int reg_offset, reg_size;
if (regno < 0 || regno >= DBG_MAX_REG_NUM)
return -EINVAL;
reg_offset = dbg_reg_def[regno].offset;
reg_size = dbg_reg_def[regno].size;
if (reg_offset == -1)
return 0;
/* Handle general-purpose/orig_a0/pc/badv registers */
if (regno <= DBG_PT_REGS_END) {
memcpy((void *)regs + reg_offset, mem, reg_size);
return 0;
}
if (!(regs->csr_euen & CSR_EUEN_FPEN))
return 0;
/* Handle FP registers */
switch (regno) {
case DBG_FCSR: /* Process the fcsr */
memcpy((void *)&current->thread.fpu.fcsr, mem, reg_size);
break;
case DBG_FCC_BASE ... DBG_FCC_END: /* Process the fcc */
memcpy((void *)&current->thread.fpu.fcc + reg_offset, mem, reg_size);
break;
case DBG_FPR_BASE ... DBG_FPR_END: /* Process the fpr */
memcpy((void *)&current->thread.fpu.fpr[reg_offset], mem, reg_size);
break;
default:
break;
}
restore_fp(current);
return 0;
}
/*
* Similar to regs_to_gdb_regs() except that process is sleeping and so
* we may not be able to get all the info.
*/
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
{
/* Initialize to zero */
memset((char *)gdb_regs, 0, NUMREGBYTES);
gdb_regs[DBG_LOONGARCH_RA] = p->thread.reg01;
gdb_regs[DBG_LOONGARCH_TP] = (long)p;
gdb_regs[DBG_LOONGARCH_SP] = p->thread.reg03;
/* S0 - S8 */
gdb_regs[DBG_LOONGARCH_S0] = p->thread.reg23;
gdb_regs[DBG_LOONGARCH_S1] = p->thread.reg24;
gdb_regs[DBG_LOONGARCH_S2] = p->thread.reg25;
gdb_regs[DBG_LOONGARCH_S3] = p->thread.reg26;
gdb_regs[DBG_LOONGARCH_S4] = p->thread.reg27;
gdb_regs[DBG_LOONGARCH_S5] = p->thread.reg28;
gdb_regs[DBG_LOONGARCH_S6] = p->thread.reg29;
gdb_regs[DBG_LOONGARCH_S7] = p->thread.reg30;
gdb_regs[DBG_LOONGARCH_S8] = p->thread.reg31;
/*
* PC use return address (RA), i.e. the moment after return from __switch_to()
*/
gdb_regs[DBG_LOONGARCH_PC] = p->thread.reg01;
}
void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
{
regs->csr_era = pc;
}
void arch_kgdb_breakpoint(void)
{
__asm__ __volatile__ ( \
".globl kgdb_breakinst\n\t" \
"nop\n" \
"kgdb_breakinst:\tbreak 2\n\t"); /* BRK_KDB = 2 */
}
/*
* Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
* then try to fall into the debugger
*/
static int kgdb_loongarch_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
{
struct die_args *args = (struct die_args *)ptr;
struct pt_regs *regs = args->regs;
/* Userspace events, ignore. */
if (user_mode(regs))
return NOTIFY_DONE;
if (!kgdb_io_module_registered)
return NOTIFY_DONE;
if (atomic_read(&kgdb_active) != -1)
kgdb_nmicallback(smp_processor_id(), regs);
if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
return NOTIFY_DONE;
if (atomic_read(&kgdb_setting_breakpoint))
if (regs->csr_era == (unsigned long)&kgdb_breakinst)
regs->csr_era += LOONGARCH_INSN_SIZE;
return NOTIFY_STOP;
}
bool kgdb_breakpoint_handler(struct pt_regs *regs)
{
struct die_args args = {
.regs = regs,
.str = "Break",
.err = BRK_KDB,
.trapnr = read_csr_excode(),
.signr = SIGTRAP,
};
return (kgdb_loongarch_notify(NULL, DIE_TRAP, &args) == NOTIFY_STOP) ? true : false;
}
static struct notifier_block kgdb_notifier = {
.notifier_call = kgdb_loongarch_notify,
};
static inline void kgdb_arch_update_addr(struct pt_regs *regs,
char *remcom_in_buffer)
{
unsigned long addr;
char *ptr;
ptr = &remcom_in_buffer[1];
if (kgdb_hex2long(&ptr, &addr))
regs->csr_era = addr;
}
/* Calculate the new address for after a step */
static int get_step_address(struct pt_regs *regs, unsigned long *next_addr)
{
char cj_val;
unsigned int si, si_l, si_h, rd, rj, cj;
unsigned long pc = instruction_pointer(regs);
union loongarch_instruction *ip = (union loongarch_instruction *)pc;
if (pc & 3) {
pr_warn("%s: invalid pc 0x%lx\n", __func__, pc);
return -EINVAL;
}
*next_addr = pc + LOONGARCH_INSN_SIZE;
si_h = ip->reg0i26_format.immediate_h;
si_l = ip->reg0i26_format.immediate_l;
switch (ip->reg0i26_format.opcode) {
case b_op:
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27);
return 0;
case bl_op:
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27);
regs->regs[1] = pc + LOONGARCH_INSN_SIZE;
return 0;
}
rj = ip->reg1i21_format.rj;
cj = (rj & 0x07) + DBG_FCC_BASE;
si_l = ip->reg1i21_format.immediate_l;
si_h = ip->reg1i21_format.immediate_h;
dbg_get_reg(cj, &cj_val, regs);
switch (ip->reg1i21_format.opcode) {
case beqz_op:
if (regs->regs[rj] == 0)
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
return 0;
case bnez_op:
if (regs->regs[rj] != 0)
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
return 0;
case bceqz_op: /* bceqz_op = bcnez_op */
if (((rj & 0x18) == 0x00) && !cj_val) /* bceqz */
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
if (((rj & 0x18) == 0x08) && cj_val) /* bcnez */
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
return 0;
}
rj = ip->reg2i16_format.rj;
rd = ip->reg2i16_format.rd;
si = ip->reg2i16_format.immediate;
switch (ip->reg2i16_format.opcode) {
case beq_op:
if (regs->regs[rj] == regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bne_op:
if (regs->regs[rj] != regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case blt_op:
if ((long)regs->regs[rj] < (long)regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bge_op:
if ((long)regs->regs[rj] >= (long)regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bltu_op:
if (regs->regs[rj] < regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bgeu_op:
if (regs->regs[rj] >= regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case jirl_op:
regs->regs[rd] = pc + LOONGARCH_INSN_SIZE;
*next_addr = regs->regs[rj] + sign_extend64(si << 2, 17);
return 0;
}
return 0;
}
static int do_single_step(struct pt_regs *regs)
{
int error = 0;
unsigned long addr = 0; /* Determine where the target instruction will send us to */
error = get_step_address(regs, &addr);
if (error)
return error;
/* Store the opcode in the stepped address */
error = get_kernel_nofault(stepped_opcode, (void *)addr);
if (error)
return error;
stepped_address = addr;
/* Replace the opcode with the break instruction */
error = copy_to_kernel_nofault((void *)stepped_address,
arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
if (error) {
stepped_opcode = 0;
stepped_address = 0;
} else {
kgdb_single_step = 1;
atomic_set(&kgdb_cpu_doing_single_step, raw_smp_processor_id());
}
return error;
}
/* Undo a single step */
static void undo_single_step(struct pt_regs *regs)
{
if (stepped_opcode) {
copy_to_kernel_nofault((void *)stepped_address,
(void *)&stepped_opcode, BREAK_INSTR_SIZE);
flush_icache_range(stepped_address, stepped_address + BREAK_INSTR_SIZE);
}
stepped_opcode = 0;
stepped_address = 0;
kgdb_single_step = 0;
atomic_set(&kgdb_cpu_doing_single_step, -1);
}
int kgdb_arch_handle_exception(int vector, int signo, int err_code,
char *remcom_in_buffer, char *remcom_out_buffer,
struct pt_regs *regs)
{
int ret = 0;
undo_single_step(regs);
regs->csr_prmd |= CSR_PRMD_PWE;
switch (remcom_in_buffer[0]) {
case 'D':
case 'k':
regs->csr_prmd &= ~CSR_PRMD_PWE;
fallthrough;
case 'c':
kgdb_arch_update_addr(regs, remcom_in_buffer);
break;
case 's':
kgdb_arch_update_addr(regs, remcom_in_buffer);
ret = do_single_step(regs);
break;
default:
ret = -1;
}
return ret;
}
static struct hw_breakpoint {
unsigned int enabled;
unsigned long addr;
int len;
int type;
struct perf_event * __percpu *pev;
} breakinfo[LOONGARCH_MAX_BRP];
static int hw_break_reserve_slot(int breakno)
{
int cpu, cnt = 0;
struct perf_event **pevent;
for_each_online_cpu(cpu) {
cnt++;
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
if (dbg_reserve_bp_slot(*pevent))
goto fail;
}
return 0;
fail:
for_each_online_cpu(cpu) {
cnt--;
if (!cnt)
break;
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
dbg_release_bp_slot(*pevent);
}
return -1;
}
static int hw_break_release_slot(int breakno)
{
int cpu;
struct perf_event **pevent;
if (dbg_is_early)
return 0;
for_each_online_cpu(cpu) {
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
if (dbg_release_bp_slot(*pevent))
/*
* The debugger is responsible for handing the retry on
* remove failure.
*/
return -1;
}
return 0;
}
static int kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
{
int i;
for (i = 0; i < LOONGARCH_MAX_BRP; i++)
if (!breakinfo[i].enabled)
break;
if (i == LOONGARCH_MAX_BRP)
return -1;
switch (bptype) {
case BP_HARDWARE_BREAKPOINT:
breakinfo[i].type = HW_BREAKPOINT_X;
break;
case BP_READ_WATCHPOINT:
breakinfo[i].type = HW_BREAKPOINT_R;
break;
case BP_WRITE_WATCHPOINT:
breakinfo[i].type = HW_BREAKPOINT_W;
break;
case BP_ACCESS_WATCHPOINT:
breakinfo[i].type = HW_BREAKPOINT_RW;
break;
default:
return -1;
}
switch (len) {
case 1:
breakinfo[i].len = HW_BREAKPOINT_LEN_1;
break;
case 2:
breakinfo[i].len = HW_BREAKPOINT_LEN_2;
break;
case 4:
breakinfo[i].len = HW_BREAKPOINT_LEN_4;
break;
case 8:
breakinfo[i].len = HW_BREAKPOINT_LEN_8;
break;
default:
return -1;
}
breakinfo[i].addr = addr;
if (hw_break_reserve_slot(i)) {
breakinfo[i].addr = 0;
return -1;
}
breakinfo[i].enabled = 1;
return 0;
}
static int kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
{
int i;
for (i = 0; i < LOONGARCH_MAX_BRP; i++)
if (breakinfo[i].addr == addr && breakinfo[i].enabled)
break;
if (i == LOONGARCH_MAX_BRP)
return -1;
if (hw_break_release_slot(i)) {
pr_err("Cannot remove hw breakpoint at %lx\n", addr);
return -1;
}
breakinfo[i].enabled = 0;
return 0;
}
static void kgdb_disable_hw_break(struct pt_regs *regs)
{
int i;
int cpu = raw_smp_processor_id();
struct perf_event *bp;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (!breakinfo[i].enabled)
continue;
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (bp->attr.disabled == 1)
continue;
arch_uninstall_hw_breakpoint(bp);
bp->attr.disabled = 1;
}
/* Disable hardware debugging while we are in kgdb */
csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
}
static void kgdb_remove_all_hw_break(void)
{
int i;
int cpu = raw_smp_processor_id();
struct perf_event *bp;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (!breakinfo[i].enabled)
continue;
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (!bp->attr.disabled) {
arch_uninstall_hw_breakpoint(bp);
bp->attr.disabled = 1;
continue;
}
if (hw_break_release_slot(i))
pr_err("KGDB: hw bpt remove failed %lx\n", breakinfo[i].addr);
breakinfo[i].enabled = 0;
}
csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
kgdb_watch_activated = 0;
}
static void kgdb_correct_hw_break(void)
{
int i, activated = 0;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
struct perf_event *bp;
int val;
int cpu = raw_smp_processor_id();
if (!breakinfo[i].enabled)
continue;
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (bp->attr.disabled != 1)
continue;
bp->attr.bp_addr = breakinfo[i].addr;
bp->attr.bp_len = breakinfo[i].len;
bp->attr.bp_type = breakinfo[i].type;
val = hw_breakpoint_arch_parse(bp, &bp->attr, counter_arch_bp(bp));
if (val)
return;
val = arch_install_hw_breakpoint(bp);
if (!val)
bp->attr.disabled = 0;
activated = 1;
}
csr_xchg32(activated ? CSR_CRMD_WE : 0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
kgdb_watch_activated = activated;
}
const struct kgdb_arch arch_kgdb_ops = {
.gdb_bpt_instr = {0x02, 0x00, break_op >> 1, 0x00}, /* BRK_KDB = 2 */
.flags = KGDB_HW_BREAKPOINT,
.set_hw_breakpoint = kgdb_set_hw_break,
.remove_hw_breakpoint = kgdb_remove_hw_break,
.disable_hw_break = kgdb_disable_hw_break,
.remove_all_hw_break = kgdb_remove_all_hw_break,
.correct_hw_break = kgdb_correct_hw_break,
};
int kgdb_arch_init(void)
{
return register_die_notifier(&kgdb_notifier);
}
void kgdb_arch_late(void)
{
int i, cpu;
struct perf_event_attr attr;
struct perf_event **pevent;
hw_breakpoint_init(&attr);
attr.bp_addr = (unsigned long)kgdb_arch_init;
attr.bp_len = HW_BREAKPOINT_LEN_4;
attr.bp_type = HW_BREAKPOINT_W;
attr.disabled = 1;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (breakinfo[i].pev)
continue;
breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
if (IS_ERR((void * __force)breakinfo[i].pev)) {
pr_err("kgdb: Could not allocate hw breakpoints.\n");
breakinfo[i].pev = NULL;
return;
}
for_each_online_cpu(cpu) {
pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
if (pevent[0]->destroy) {
pevent[0]->destroy = NULL;
release_bp_slot(*pevent);
}
}
}
}
void kgdb_arch_exit(void)
{
int i;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (breakinfo[i].pev) {
unregister_wide_hw_breakpoint(breakinfo[i].pev);
breakinfo[i].pev = NULL;
}
}
unregister_die_notifier(&kgdb_notifier);
}