Both __pkru_allows_write() and arch_set_user_pkey_access() shift
PKRU_WD_BIT (a signed constant) by up to 30 bits, hitting the
sign bit.
Use unsigned constants instead.
Clearly pkey 15 has not been used in combination with UBSAN yet.
Noticed by code inspection only. I can't actually provoke the
compiler into generating incorrect logic as far as this shift is
concerned.
[
dhansen: add stable@ tag, plus minor changelog massaging,
For anyone doing backports, these #defines were in
arch/x86/include/asm/pgtable.h before 784a46618f.
]
Fixes: 33a709b25a ("mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys")
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20211216000856.4480-1-andrew.cooper3@citrix.com
PKRU code does not need anything from FPU headers. Include cpufeature.h
instead and fixup the resulting fallout in perf.
This is a preparation for FPU changes in order to prevent recursive include
hell.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011538.551522694@linutronix.de
The PKRU value of a task is stored in task->thread.pkru when the task is
scheduled out. PKRU is restored on schedule in from there. So keeping the
XSAVE buffer up to date is a pointless exercise.
Remove the xstate fiddling and cleanup all related functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.897372712@linutronix.de
Provide a simple and trivial helper which just writes the PKRU default
value without trying to fiddle with the task's xsave buffer.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.513729794@linutronix.de
When CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS is disabled then the following
code fails to compile:
if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
u32 pkru = READ_ONCE(init_pkru_value);
..
}
because init_pkru_value is defined as '0' which makes READ_ONCE() upset.
Provide an accessor macro to avoid #ifdeffery all over the place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.404880646@linutronix.de
X86_FEATURE_OSPKE is enabled first on the boot CPU and the feature flag is
set. Secondary CPUs have to enable CR4.PKE as well and set their per CPU
feature flag. That's ineffective because all call sites have checks for
boot_cpu_data.
Make it smarter and force the feature flag when PKU is enabled on the boot
cpu which allows then to use cpu_feature_enabled(X86_FEATURE_OSPKE) all
over the place. That either compiles the code out when PKEY support is
disabled in Kconfig or uses a static_cpu_has() for the feature check which
makes a significant difference in hotpaths, e.g. context switch.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.305113644@linutronix.de
write_pkru() was originally used just to write to the PKRU register. It
was mercifully short and sweet and was not out of place in pgtable.h with
some other pkey-related code.
But, later work included a requirement to also modify the task XSAVE
buffer when updating the register. This really is more related to the
XSAVE architecture than to paging.
Move the read/write_pkru() to asm/pkru.h. pgtable.h won't miss them.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.102647114@linutronix.de