tools/rtla: Add -U/--user-load option to timerlat
The timerlat tracer provides an interface for any application to wait for the timerlat's periodic wakeup. Currently, rtla timerlat uses it to dispatch its user-space workload (-u option). But as the tracer interface is generic, rtla timerlat can also be used to monitor any workload that uses it. For example, a user might place their own workload to wait on the tracer interface, and monitor the results with rtla timerlat. Add the -U option to rtla timerlat top and hist. With this option, rtla timerlat will not dispatch its workload but only setting up the system, waiting for a user to dispatch its workload. The sample code in this patch is an example of python application that loops in the timerlat tracer fd. To use it, dispatch: # rtla timerlat -U In a terminal, then run the python program on another terminal, specifying the CPU to run it. For example, setting on CPU 1: #./timerlat_load.py 1 Then rtla timerlat will start printing the statistics of the ./timerlat_load.py app. An interesting point is that the "Ret user Timer Latency" value is the overall response time of the load. The sample load does a memory copy to exemplify that. The stop tracing options on rtla timerlat works in this setup as well, including auto analysis. Link: https://lkml.kernel.org/r/36e6bcf18fe15c7601048fd4c65aeb193c502cc8.1707229706.git.bristot@kernel.org Cc: Jonathan Corbet <corbet@lwn.net> Cc: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
This commit is contained in:
parent
012e4e77df
commit
a23c05fd76
|
@ -33,3 +33,9 @@
|
|||
to wait on the timerlat_fd. Once the workload is awakes, it goes to sleep again
|
||||
adding so the measurement for the kernel-to-user and user-to-kernel to the tracer
|
||||
output.
|
||||
|
||||
**-U**, **--user-load**
|
||||
|
||||
Set timerlat to run without workload, waiting for the user to dispatch a per-cpu
|
||||
task that waits for a new period on the tracing/osnoise/per_cpu/cpu$ID/timerlat_fd.
|
||||
See linux/tools/rtla/sample/timerlat_load.py for an example of user-load code.
|
||||
|
|
|
@ -0,0 +1,74 @@
|
|||
#!/usr/bin/env python3
|
||||
# SPDX-License-Identifier: GPL-2.0-only
|
||||
#
|
||||
# Copyright (C) 2024 Red Hat, Inc. Daniel Bristot de Oliveira <bristot@kernel.org>
|
||||
#
|
||||
# This is a sample code about how to use timerlat's timer by any workload
|
||||
# so rtla can measure and provide auto-analysis for the overall latency (IOW
|
||||
# the response time) for a task.
|
||||
#
|
||||
# Before running it, you need to dispatch timerlat with -U option in a terminal.
|
||||
# Then # run this script pinned to a CPU on another terminal. For example:
|
||||
#
|
||||
# timerlat_load.py 1 -p 95
|
||||
#
|
||||
# The "Timerlat IRQ" is the IRQ latency, The thread latency is the latency
|
||||
# for the python process to get the CPU. The Ret from user Timer Latency is
|
||||
# the overall latency. In other words, it is the response time for that
|
||||
# activation.
|
||||
#
|
||||
# This is just an example, the load is reading 20MB of data from /dev/full
|
||||
# It is in python because it is easy to read :-)
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
import os
|
||||
|
||||
parser = argparse.ArgumentParser(description='user-space timerlat thread in Python')
|
||||
parser.add_argument("cpu", help='CPU to run timerlat thread')
|
||||
parser.add_argument("-p", "--prio", help='FIFO priority')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
affinity_mask = { int(args.cpu) }
|
||||
except:
|
||||
print("Invalid cpu: " + args.cpu)
|
||||
exit(1)
|
||||
|
||||
try:
|
||||
os.sched_setaffinity(0, affinity_mask);
|
||||
except:
|
||||
print("Error setting affinity")
|
||||
exit(1)
|
||||
|
||||
if (args.prio):
|
||||
try:
|
||||
param = os.sched_param(int(args.prio))
|
||||
os.sched_setscheduler(0, os.SCHED_FIFO, param)
|
||||
except:
|
||||
print("Error setting priority")
|
||||
exit(1)
|
||||
|
||||
try:
|
||||
timerlat_path = "/sys/kernel/tracing/osnoise/per_cpu/cpu" + args.cpu + "/timerlat_fd"
|
||||
timerlat_fd = open(timerlat_path, 'r')
|
||||
except:
|
||||
print("Error opening timerlat fd, did you run timerlat -U?")
|
||||
exit(1)
|
||||
|
||||
try:
|
||||
data_fd = open("/dev/full", 'r');
|
||||
except:
|
||||
print("Error opening data fd")
|
||||
|
||||
while True:
|
||||
try:
|
||||
timerlat_fd.read(1)
|
||||
data_fd.read(20*1024*1024)
|
||||
except:
|
||||
print("Leaving")
|
||||
break
|
||||
|
||||
timerlat_fd.close()
|
||||
data_fd.close()
|
|
@ -39,6 +39,7 @@ struct timerlat_hist_params {
|
|||
int hk_cpus;
|
||||
int no_aa;
|
||||
int dump_tasks;
|
||||
int user_workload;
|
||||
int user_hist;
|
||||
cpu_set_t hk_cpu_set;
|
||||
struct sched_attr sched_param;
|
||||
|
@ -534,6 +535,7 @@ static void timerlat_hist_usage(char *usage)
|
|||
" d:runtime[us|ms|s]:period[us|ms|s] - use SCHED_DEADLINE with runtime and period",
|
||||
" in nanoseconds",
|
||||
" -u/--user-threads: use rtla user-space threads instead of in-kernel timerlat threads",
|
||||
" -U/--user-load: enable timerlat for user-defined user-space workload",
|
||||
NULL,
|
||||
};
|
||||
|
||||
|
@ -595,6 +597,7 @@ static struct timerlat_hist_params
|
|||
{"thread", required_argument, 0, 'T'},
|
||||
{"trace", optional_argument, 0, 't'},
|
||||
{"user-threads", no_argument, 0, 'u'},
|
||||
{"user-load", no_argument, 0, 'U'},
|
||||
{"event", required_argument, 0, 'e'},
|
||||
{"no-irq", no_argument, 0, '0'},
|
||||
{"no-thread", no_argument, 0, '1'},
|
||||
|
@ -613,7 +616,7 @@ static struct timerlat_hist_params
|
|||
/* getopt_long stores the option index here. */
|
||||
int option_index = 0;
|
||||
|
||||
c = getopt_long(argc, argv, "a:c:C::b:d:e:E:DhH:i:np:P:s:t::T:u0123456:7:8:9\1",
|
||||
c = getopt_long(argc, argv, "a:c:C::b:d:e:E:DhH:i:np:P:s:t::T:uU0123456:7:8:9\1",
|
||||
long_options, &option_index);
|
||||
|
||||
/* detect the end of the options. */
|
||||
|
@ -724,6 +727,9 @@ static struct timerlat_hist_params
|
|||
params->trace_output = "timerlat_trace.txt";
|
||||
break;
|
||||
case 'u':
|
||||
params->user_workload = 1;
|
||||
/* fallback: -u implies in -U */
|
||||
case 'U':
|
||||
params->user_hist = 1;
|
||||
break;
|
||||
case '0': /* no irq */
|
||||
|
@ -985,7 +991,7 @@ int timerlat_hist_main(int argc, char *argv[])
|
|||
}
|
||||
}
|
||||
|
||||
if (params->cgroup && !params->user_hist) {
|
||||
if (params->cgroup && !params->user_workload) {
|
||||
retval = set_comm_cgroup("timerlat/", params->cgroup_name);
|
||||
if (!retval) {
|
||||
err_msg("Failed to move threads to cgroup\n");
|
||||
|
@ -1049,7 +1055,7 @@ int timerlat_hist_main(int argc, char *argv[])
|
|||
tool->start_time = time(NULL);
|
||||
timerlat_hist_set_signals(params);
|
||||
|
||||
if (params->user_hist) {
|
||||
if (params->user_workload) {
|
||||
/* rtla asked to stop */
|
||||
params_u.should_run = 1;
|
||||
/* all threads left */
|
||||
|
@ -1086,14 +1092,14 @@ int timerlat_hist_main(int argc, char *argv[])
|
|||
break;
|
||||
|
||||
/* is there still any user-threads ? */
|
||||
if (params->user_hist) {
|
||||
if (params->user_workload) {
|
||||
if (params_u.stopped_running) {
|
||||
debug_msg("timerlat user-space threads stopped!\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (params->user_hist && !params_u.stopped_running) {
|
||||
if (params->user_workload && !params_u.stopped_running) {
|
||||
params_u.should_run = 0;
|
||||
sleep(1);
|
||||
}
|
||||
|
|
|
@ -43,6 +43,7 @@ struct timerlat_top_params {
|
|||
int cgroup;
|
||||
int hk_cpus;
|
||||
int user_top;
|
||||
int user_workload;
|
||||
cpu_set_t hk_cpu_set;
|
||||
struct sched_attr sched_param;
|
||||
struct trace_events *events;
|
||||
|
@ -364,6 +365,7 @@ static void timerlat_top_usage(char *usage)
|
|||
" d:runtime[us|ms|s]:period[us|ms|s] - use SCHED_DEADLINE with runtime and period",
|
||||
" in nanoseconds",
|
||||
" -u/--user-threads: use rtla user-space threads instead of in-kernel timerlat threads",
|
||||
" -U/--user-load: enable timerlat for user-defined user-space workload",
|
||||
NULL,
|
||||
};
|
||||
|
||||
|
@ -423,6 +425,7 @@ static struct timerlat_top_params
|
|||
{"thread", required_argument, 0, 'T'},
|
||||
{"trace", optional_argument, 0, 't'},
|
||||
{"user-threads", no_argument, 0, 'u'},
|
||||
{"user-load", no_argument, 0, 'U'},
|
||||
{"trigger", required_argument, 0, '0'},
|
||||
{"filter", required_argument, 0, '1'},
|
||||
{"dma-latency", required_argument, 0, '2'},
|
||||
|
@ -435,7 +438,7 @@ static struct timerlat_top_params
|
|||
/* getopt_long stores the option index here. */
|
||||
int option_index = 0;
|
||||
|
||||
c = getopt_long(argc, argv, "a:c:C::d:De:hH:i:np:P:qs:t::T:u0:1:2:345:",
|
||||
c = getopt_long(argc, argv, "a:c:C::d:De:hH:i:np:P:qs:t::T:uU0:1:2:345:",
|
||||
long_options, &option_index);
|
||||
|
||||
/* detect the end of the options. */
|
||||
|
@ -552,6 +555,9 @@ static struct timerlat_top_params
|
|||
|
||||
break;
|
||||
case 'u':
|
||||
params->user_workload = true;
|
||||
/* fallback: -u implies -U */
|
||||
case 'U':
|
||||
params->user_top = true;
|
||||
break;
|
||||
case '0': /* trigger */
|
||||
|
@ -869,7 +875,7 @@ int timerlat_top_main(int argc, char *argv[])
|
|||
top->start_time = time(NULL);
|
||||
timerlat_top_set_signals(params);
|
||||
|
||||
if (params->user_top) {
|
||||
if (params->user_workload) {
|
||||
/* rtla asked to stop */
|
||||
params_u.should_run = 1;
|
||||
/* all threads left */
|
||||
|
@ -912,7 +918,7 @@ int timerlat_top_main(int argc, char *argv[])
|
|||
break;
|
||||
|
||||
/* is there still any user-threads ? */
|
||||
if (params->user_top) {
|
||||
if (params->user_workload) {
|
||||
if (params_u.stopped_running) {
|
||||
debug_msg("timerlat user space threads stopped!\n");
|
||||
break;
|
||||
|
@ -920,7 +926,7 @@ int timerlat_top_main(int argc, char *argv[])
|
|||
}
|
||||
}
|
||||
|
||||
if (params->user_top && !params_u.stopped_running) {
|
||||
if (params->user_workload && !params_u.stopped_running) {
|
||||
params_u.should_run = 0;
|
||||
sleep(1);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue