crypto: skcipher - Add lskcipher

Add a new API type lskcipher designed for taking straight kernel
pointers instead of SG lists.  Its relationship to skcipher will
be analogous to that between shash and ahash.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Herbert Xu 2023-09-14 16:28:24 +08:00
parent b64d143b75
commit 31865c4c4d
8 changed files with 1086 additions and 45 deletions

View File

@ -16,7 +16,11 @@ obj-$(CONFIG_CRYPTO_ALGAPI2) += crypto_algapi.o
obj-$(CONFIG_CRYPTO_AEAD2) += aead.o obj-$(CONFIG_CRYPTO_AEAD2) += aead.o
obj-$(CONFIG_CRYPTO_GENIV) += geniv.o obj-$(CONFIG_CRYPTO_GENIV) += geniv.o
obj-$(CONFIG_CRYPTO_SKCIPHER2) += skcipher.o crypto_skcipher-y += lskcipher.o
crypto_skcipher-y += skcipher.o
obj-$(CONFIG_CRYPTO_SKCIPHER2) += crypto_skcipher.o
obj-$(CONFIG_CRYPTO_SEQIV) += seqiv.o obj-$(CONFIG_CRYPTO_SEQIV) += seqiv.o
obj-$(CONFIG_CRYPTO_ECHAINIV) += echainiv.o obj-$(CONFIG_CRYPTO_ECHAINIV) += echainiv.o

View File

@ -929,7 +929,7 @@ static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
return PTR_ERR(algt); return PTR_ERR(algt);
switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_SKCIPHER: case CRYPTO_ALG_TYPE_LSKCIPHER:
return cryptd_create_skcipher(tmpl, tb, algt, &queue); return cryptd_create_skcipher(tmpl, tb, algt, &queue);
case CRYPTO_ALG_TYPE_HASH: case CRYPTO_ALG_TYPE_HASH:
return cryptd_create_hash(tmpl, tb, algt, &queue); return cryptd_create_hash(tmpl, tb, algt, &queue);

594
crypto/lskcipher.c Normal file
View File

@ -0,0 +1,594 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Linear symmetric key cipher operations.
*
* Generic encrypt/decrypt wrapper for ciphers.
*
* Copyright (c) 2023 Herbert Xu <herbert@gondor.apana.org.au>
*/
#include <linux/cryptouser.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <net/netlink.h>
#include "skcipher.h"
static inline struct crypto_lskcipher *__crypto_lskcipher_cast(
struct crypto_tfm *tfm)
{
return container_of(tfm, struct crypto_lskcipher, base);
}
static inline struct lskcipher_alg *__crypto_lskcipher_alg(
struct crypto_alg *alg)
{
return container_of(alg, struct lskcipher_alg, co.base);
}
static inline struct crypto_istat_cipher *lskcipher_get_stat(
struct lskcipher_alg *alg)
{
return skcipher_get_stat_common(&alg->co);
}
static inline int crypto_lskcipher_errstat(struct lskcipher_alg *alg, int err)
{
struct crypto_istat_cipher *istat = lskcipher_get_stat(alg);
if (!IS_ENABLED(CONFIG_CRYPTO_STATS))
return err;
if (err)
atomic64_inc(&istat->err_cnt);
return err;
}
static int lskcipher_setkey_unaligned(struct crypto_lskcipher *tfm,
const u8 *key, unsigned int keylen)
{
unsigned long alignmask = crypto_lskcipher_alignmask(tfm);
struct lskcipher_alg *cipher = crypto_lskcipher_alg(tfm);
u8 *buffer, *alignbuffer;
unsigned long absize;
int ret;
absize = keylen + alignmask;
buffer = kmalloc(absize, GFP_ATOMIC);
if (!buffer)
return -ENOMEM;
alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
memcpy(alignbuffer, key, keylen);
ret = cipher->setkey(tfm, alignbuffer, keylen);
kfree_sensitive(buffer);
return ret;
}
int crypto_lskcipher_setkey(struct crypto_lskcipher *tfm, const u8 *key,
unsigned int keylen)
{
unsigned long alignmask = crypto_lskcipher_alignmask(tfm);
struct lskcipher_alg *cipher = crypto_lskcipher_alg(tfm);
if (keylen < cipher->co.min_keysize || keylen > cipher->co.max_keysize)
return -EINVAL;
if ((unsigned long)key & alignmask)
return lskcipher_setkey_unaligned(tfm, key, keylen);
else
return cipher->setkey(tfm, key, keylen);
}
EXPORT_SYMBOL_GPL(crypto_lskcipher_setkey);
static int crypto_lskcipher_crypt_unaligned(
struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len,
u8 *iv, int (*crypt)(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv, bool final))
{
unsigned ivsize = crypto_lskcipher_ivsize(tfm);
unsigned bs = crypto_lskcipher_blocksize(tfm);
unsigned cs = crypto_lskcipher_chunksize(tfm);
int err;
u8 *tiv;
u8 *p;
BUILD_BUG_ON(MAX_CIPHER_BLOCKSIZE > PAGE_SIZE ||
MAX_CIPHER_ALIGNMASK >= PAGE_SIZE);
tiv = kmalloc(PAGE_SIZE, GFP_ATOMIC);
if (!tiv)
return -ENOMEM;
memcpy(tiv, iv, ivsize);
p = kmalloc(PAGE_SIZE, GFP_ATOMIC);
err = -ENOMEM;
if (!p)
goto out;
while (len >= bs) {
unsigned chunk = min((unsigned)PAGE_SIZE, len);
int err;
if (chunk > cs)
chunk &= ~(cs - 1);
memcpy(p, src, chunk);
err = crypt(tfm, p, p, chunk, tiv, true);
if (err)
goto out;
memcpy(dst, p, chunk);
src += chunk;
dst += chunk;
len -= chunk;
}
err = len ? -EINVAL : 0;
out:
memcpy(iv, tiv, ivsize);
kfree_sensitive(p);
kfree_sensitive(tiv);
return err;
}
static int crypto_lskcipher_crypt(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv,
int (*crypt)(struct crypto_lskcipher *tfm,
const u8 *src, u8 *dst,
unsigned len, u8 *iv,
bool final))
{
unsigned long alignmask = crypto_lskcipher_alignmask(tfm);
struct lskcipher_alg *alg = crypto_lskcipher_alg(tfm);
int ret;
if (((unsigned long)src | (unsigned long)dst | (unsigned long)iv) &
alignmask) {
ret = crypto_lskcipher_crypt_unaligned(tfm, src, dst, len, iv,
crypt);
goto out;
}
ret = crypt(tfm, src, dst, len, iv, true);
out:
return crypto_lskcipher_errstat(alg, ret);
}
int crypto_lskcipher_encrypt(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv)
{
struct lskcipher_alg *alg = crypto_lskcipher_alg(tfm);
if (IS_ENABLED(CONFIG_CRYPTO_STATS)) {
struct crypto_istat_cipher *istat = lskcipher_get_stat(alg);
atomic64_inc(&istat->encrypt_cnt);
atomic64_add(len, &istat->encrypt_tlen);
}
return crypto_lskcipher_crypt(tfm, src, dst, len, iv, alg->encrypt);
}
EXPORT_SYMBOL_GPL(crypto_lskcipher_encrypt);
int crypto_lskcipher_decrypt(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv)
{
struct lskcipher_alg *alg = crypto_lskcipher_alg(tfm);
if (IS_ENABLED(CONFIG_CRYPTO_STATS)) {
struct crypto_istat_cipher *istat = lskcipher_get_stat(alg);
atomic64_inc(&istat->decrypt_cnt);
atomic64_add(len, &istat->decrypt_tlen);
}
return crypto_lskcipher_crypt(tfm, src, dst, len, iv, alg->decrypt);
}
EXPORT_SYMBOL_GPL(crypto_lskcipher_decrypt);
int crypto_lskcipher_setkey_sg(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct crypto_lskcipher **ctx = crypto_skcipher_ctx(tfm);
return crypto_lskcipher_setkey(*ctx, key, keylen);
}
static int crypto_lskcipher_crypt_sg(struct skcipher_request *req,
int (*crypt)(struct crypto_lskcipher *tfm,
const u8 *src, u8 *dst,
unsigned len, u8 *iv,
bool final))
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct crypto_lskcipher **ctx = crypto_skcipher_ctx(skcipher);
struct crypto_lskcipher *tfm = *ctx;
struct skcipher_walk walk;
int err;
err = skcipher_walk_virt(&walk, req, false);
while (walk.nbytes) {
err = crypt(tfm, walk.src.virt.addr, walk.dst.virt.addr,
walk.nbytes, walk.iv, walk.nbytes == walk.total);
err = skcipher_walk_done(&walk, err);
}
return err;
}
int crypto_lskcipher_encrypt_sg(struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct crypto_lskcipher **ctx = crypto_skcipher_ctx(skcipher);
struct lskcipher_alg *alg = crypto_lskcipher_alg(*ctx);
return crypto_lskcipher_crypt_sg(req, alg->encrypt);
}
int crypto_lskcipher_decrypt_sg(struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct crypto_lskcipher **ctx = crypto_skcipher_ctx(skcipher);
struct lskcipher_alg *alg = crypto_lskcipher_alg(*ctx);
return crypto_lskcipher_crypt_sg(req, alg->decrypt);
}
static void crypto_lskcipher_exit_tfm(struct crypto_tfm *tfm)
{
struct crypto_lskcipher *skcipher = __crypto_lskcipher_cast(tfm);
struct lskcipher_alg *alg = crypto_lskcipher_alg(skcipher);
alg->exit(skcipher);
}
static int crypto_lskcipher_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_lskcipher *skcipher = __crypto_lskcipher_cast(tfm);
struct lskcipher_alg *alg = crypto_lskcipher_alg(skcipher);
if (alg->exit)
skcipher->base.exit = crypto_lskcipher_exit_tfm;
if (alg->init)
return alg->init(skcipher);
return 0;
}
static void crypto_lskcipher_free_instance(struct crypto_instance *inst)
{
struct lskcipher_instance *skcipher =
container_of(inst, struct lskcipher_instance, s.base);
skcipher->free(skcipher);
}
static void __maybe_unused crypto_lskcipher_show(
struct seq_file *m, struct crypto_alg *alg)
{
struct lskcipher_alg *skcipher = __crypto_lskcipher_alg(alg);
seq_printf(m, "type : lskcipher\n");
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
seq_printf(m, "min keysize : %u\n", skcipher->co.min_keysize);
seq_printf(m, "max keysize : %u\n", skcipher->co.max_keysize);
seq_printf(m, "ivsize : %u\n", skcipher->co.ivsize);
seq_printf(m, "chunksize : %u\n", skcipher->co.chunksize);
}
static int __maybe_unused crypto_lskcipher_report(
struct sk_buff *skb, struct crypto_alg *alg)
{
struct lskcipher_alg *skcipher = __crypto_lskcipher_alg(alg);
struct crypto_report_blkcipher rblkcipher;
memset(&rblkcipher, 0, sizeof(rblkcipher));
strscpy(rblkcipher.type, "lskcipher", sizeof(rblkcipher.type));
strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
rblkcipher.blocksize = alg->cra_blocksize;
rblkcipher.min_keysize = skcipher->co.min_keysize;
rblkcipher.max_keysize = skcipher->co.max_keysize;
rblkcipher.ivsize = skcipher->co.ivsize;
return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
sizeof(rblkcipher), &rblkcipher);
}
static int __maybe_unused crypto_lskcipher_report_stat(
struct sk_buff *skb, struct crypto_alg *alg)
{
struct lskcipher_alg *skcipher = __crypto_lskcipher_alg(alg);
struct crypto_istat_cipher *istat;
struct crypto_stat_cipher rcipher;
istat = lskcipher_get_stat(skcipher);
memset(&rcipher, 0, sizeof(rcipher));
strscpy(rcipher.type, "cipher", sizeof(rcipher.type));
rcipher.stat_encrypt_cnt = atomic64_read(&istat->encrypt_cnt);
rcipher.stat_encrypt_tlen = atomic64_read(&istat->encrypt_tlen);
rcipher.stat_decrypt_cnt = atomic64_read(&istat->decrypt_cnt);
rcipher.stat_decrypt_tlen = atomic64_read(&istat->decrypt_tlen);
rcipher.stat_err_cnt = atomic64_read(&istat->err_cnt);
return nla_put(skb, CRYPTOCFGA_STAT_CIPHER, sizeof(rcipher), &rcipher);
}
static const struct crypto_type crypto_lskcipher_type = {
.extsize = crypto_alg_extsize,
.init_tfm = crypto_lskcipher_init_tfm,
.free = crypto_lskcipher_free_instance,
#ifdef CONFIG_PROC_FS
.show = crypto_lskcipher_show,
#endif
#if IS_ENABLED(CONFIG_CRYPTO_USER)
.report = crypto_lskcipher_report,
#endif
#ifdef CONFIG_CRYPTO_STATS
.report_stat = crypto_lskcipher_report_stat,
#endif
.maskclear = ~CRYPTO_ALG_TYPE_MASK,
.maskset = CRYPTO_ALG_TYPE_MASK,
.type = CRYPTO_ALG_TYPE_LSKCIPHER,
.tfmsize = offsetof(struct crypto_lskcipher, base),
};
static void crypto_lskcipher_exit_tfm_sg(struct crypto_tfm *tfm)
{
struct crypto_lskcipher **ctx = crypto_tfm_ctx(tfm);
crypto_free_lskcipher(*ctx);
}
int crypto_init_lskcipher_ops_sg(struct crypto_tfm *tfm)
{
struct crypto_lskcipher **ctx = crypto_tfm_ctx(tfm);
struct crypto_alg *calg = tfm->__crt_alg;
struct crypto_lskcipher *skcipher;
if (!crypto_mod_get(calg))
return -EAGAIN;
skcipher = crypto_create_tfm(calg, &crypto_lskcipher_type);
if (IS_ERR(skcipher)) {
crypto_mod_put(calg);
return PTR_ERR(skcipher);
}
*ctx = skcipher;
tfm->exit = crypto_lskcipher_exit_tfm_sg;
return 0;
}
int crypto_grab_lskcipher(struct crypto_lskcipher_spawn *spawn,
struct crypto_instance *inst,
const char *name, u32 type, u32 mask)
{
spawn->base.frontend = &crypto_lskcipher_type;
return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_grab_lskcipher);
struct crypto_lskcipher *crypto_alloc_lskcipher(const char *alg_name,
u32 type, u32 mask)
{
return crypto_alloc_tfm(alg_name, &crypto_lskcipher_type, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_alloc_lskcipher);
static int lskcipher_prepare_alg(struct lskcipher_alg *alg)
{
struct crypto_alg *base = &alg->co.base;
int err;
err = skcipher_prepare_alg_common(&alg->co);
if (err)
return err;
if (alg->co.chunksize & (alg->co.chunksize - 1))
return -EINVAL;
base->cra_type = &crypto_lskcipher_type;
base->cra_flags |= CRYPTO_ALG_TYPE_LSKCIPHER;
return 0;
}
int crypto_register_lskcipher(struct lskcipher_alg *alg)
{
struct crypto_alg *base = &alg->co.base;
int err;
err = lskcipher_prepare_alg(alg);
if (err)
return err;
return crypto_register_alg(base);
}
EXPORT_SYMBOL_GPL(crypto_register_lskcipher);
void crypto_unregister_lskcipher(struct lskcipher_alg *alg)
{
crypto_unregister_alg(&alg->co.base);
}
EXPORT_SYMBOL_GPL(crypto_unregister_lskcipher);
int crypto_register_lskciphers(struct lskcipher_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_lskcipher(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_lskcipher(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_lskciphers);
void crypto_unregister_lskciphers(struct lskcipher_alg *algs, int count)
{
int i;
for (i = count - 1; i >= 0; --i)
crypto_unregister_lskcipher(&algs[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_lskciphers);
int lskcipher_register_instance(struct crypto_template *tmpl,
struct lskcipher_instance *inst)
{
int err;
if (WARN_ON(!inst->free))
return -EINVAL;
err = lskcipher_prepare_alg(&inst->alg);
if (err)
return err;
return crypto_register_instance(tmpl, lskcipher_crypto_instance(inst));
}
EXPORT_SYMBOL_GPL(lskcipher_register_instance);
static int lskcipher_setkey_simple(struct crypto_lskcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct crypto_lskcipher *cipher = lskcipher_cipher_simple(tfm);
crypto_lskcipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
crypto_lskcipher_set_flags(cipher, crypto_lskcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
return crypto_lskcipher_setkey(cipher, key, keylen);
}
static int lskcipher_init_tfm_simple(struct crypto_lskcipher *tfm)
{
struct lskcipher_instance *inst = lskcipher_alg_instance(tfm);
struct crypto_lskcipher **ctx = crypto_lskcipher_ctx(tfm);
struct crypto_lskcipher_spawn *spawn;
struct crypto_lskcipher *cipher;
spawn = lskcipher_instance_ctx(inst);
cipher = crypto_spawn_lskcipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
*ctx = cipher;
return 0;
}
static void lskcipher_exit_tfm_simple(struct crypto_lskcipher *tfm)
{
struct crypto_lskcipher **ctx = crypto_lskcipher_ctx(tfm);
crypto_free_lskcipher(*ctx);
}
static void lskcipher_free_instance_simple(struct lskcipher_instance *inst)
{
crypto_drop_lskcipher(lskcipher_instance_ctx(inst));
kfree(inst);
}
/**
* lskcipher_alloc_instance_simple - allocate instance of simple block cipher
*
* Allocate an lskcipher_instance for a simple block cipher mode of operation,
* e.g. cbc or ecb. The instance context will have just a single crypto_spawn,
* that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize,
* alignmask, and priority are set from the underlying cipher but can be
* overridden if needed. The tfm context defaults to
* struct crypto_lskcipher *, and default ->setkey(), ->init(), and
* ->exit() methods are installed.
*
* @tmpl: the template being instantiated
* @tb: the template parameters
*
* Return: a pointer to the new instance, or an ERR_PTR(). The caller still
* needs to register the instance.
*/
struct lskcipher_instance *lskcipher_alloc_instance_simple(
struct crypto_template *tmpl, struct rtattr **tb)
{
u32 mask;
struct lskcipher_instance *inst;
struct crypto_lskcipher_spawn *spawn;
struct lskcipher_alg *cipher_alg;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_LSKCIPHER, &mask);
if (err)
return ERR_PTR(err);
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
if (!inst)
return ERR_PTR(-ENOMEM);
spawn = lskcipher_instance_ctx(inst);
err = crypto_grab_lskcipher(spawn,
lskcipher_crypto_instance(inst),
crypto_attr_alg_name(tb[1]), 0, mask);
if (err)
goto err_free_inst;
cipher_alg = crypto_lskcipher_spawn_alg(spawn);
err = crypto_inst_setname(lskcipher_crypto_instance(inst), tmpl->name,
&cipher_alg->co.base);
if (err)
goto err_free_inst;
/* Don't allow nesting. */
err = -ELOOP;
if ((cipher_alg->co.base.cra_flags & CRYPTO_ALG_INSTANCE))
goto err_free_inst;
err = -EINVAL;
if (cipher_alg->co.ivsize)
goto err_free_inst;
inst->free = lskcipher_free_instance_simple;
/* Default algorithm properties, can be overridden */
inst->alg.co.base.cra_blocksize = cipher_alg->co.base.cra_blocksize;
inst->alg.co.base.cra_alignmask = cipher_alg->co.base.cra_alignmask;
inst->alg.co.base.cra_priority = cipher_alg->co.base.cra_priority;
inst->alg.co.min_keysize = cipher_alg->co.min_keysize;
inst->alg.co.max_keysize = cipher_alg->co.max_keysize;
inst->alg.co.ivsize = cipher_alg->co.base.cra_blocksize;
/* Use struct crypto_lskcipher * by default, can be overridden */
inst->alg.co.base.cra_ctxsize = sizeof(struct crypto_lskcipher *);
inst->alg.setkey = lskcipher_setkey_simple;
inst->alg.init = lskcipher_init_tfm_simple;
inst->alg.exit = lskcipher_exit_tfm_simple;
return inst;
err_free_inst:
lskcipher_free_instance_simple(inst);
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(lskcipher_alloc_instance_simple);

View File

@ -24,8 +24,9 @@
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/string.h> #include <linux/string.h>
#include <net/netlink.h> #include <net/netlink.h>
#include "skcipher.h"
#include "internal.h" #define CRYPTO_ALG_TYPE_SKCIPHER_MASK 0x0000000e
enum { enum {
SKCIPHER_WALK_PHYS = 1 << 0, SKCIPHER_WALK_PHYS = 1 << 0,
@ -43,6 +44,8 @@ struct skcipher_walk_buffer {
u8 buffer[]; u8 buffer[];
}; };
static const struct crypto_type crypto_skcipher_type;
static int skcipher_walk_next(struct skcipher_walk *walk); static int skcipher_walk_next(struct skcipher_walk *walk);
static inline void skcipher_map_src(struct skcipher_walk *walk) static inline void skcipher_map_src(struct skcipher_walk *walk)
@ -89,11 +92,7 @@ static inline struct skcipher_alg *__crypto_skcipher_alg(
static inline struct crypto_istat_cipher *skcipher_get_stat( static inline struct crypto_istat_cipher *skcipher_get_stat(
struct skcipher_alg *alg) struct skcipher_alg *alg)
{ {
#ifdef CONFIG_CRYPTO_STATS return skcipher_get_stat_common(&alg->co);
return &alg->stat;
#else
return NULL;
#endif
} }
static inline int crypto_skcipher_errstat(struct skcipher_alg *alg, int err) static inline int crypto_skcipher_errstat(struct skcipher_alg *alg, int err)
@ -468,6 +467,7 @@ static int skcipher_walk_skcipher(struct skcipher_walk *walk,
struct skcipher_request *req) struct skcipher_request *req)
{ {
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
walk->total = req->cryptlen; walk->total = req->cryptlen;
walk->nbytes = 0; walk->nbytes = 0;
@ -485,10 +485,14 @@ static int skcipher_walk_skcipher(struct skcipher_walk *walk,
SKCIPHER_WALK_SLEEP : 0; SKCIPHER_WALK_SLEEP : 0;
walk->blocksize = crypto_skcipher_blocksize(tfm); walk->blocksize = crypto_skcipher_blocksize(tfm);
walk->stride = crypto_skcipher_walksize(tfm);
walk->ivsize = crypto_skcipher_ivsize(tfm); walk->ivsize = crypto_skcipher_ivsize(tfm);
walk->alignmask = crypto_skcipher_alignmask(tfm); walk->alignmask = crypto_skcipher_alignmask(tfm);
if (alg->co.base.cra_type != &crypto_skcipher_type)
walk->stride = alg->co.chunksize;
else
walk->stride = alg->walksize;
return skcipher_walk_first(walk); return skcipher_walk_first(walk);
} }
@ -616,6 +620,11 @@ int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned long alignmask = crypto_skcipher_alignmask(tfm); unsigned long alignmask = crypto_skcipher_alignmask(tfm);
int err; int err;
if (cipher->co.base.cra_type != &crypto_skcipher_type) {
err = crypto_lskcipher_setkey_sg(tfm, key, keylen);
goto out;
}
if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
return -EINVAL; return -EINVAL;
@ -624,6 +633,7 @@ int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
else else
err = cipher->setkey(tfm, key, keylen); err = cipher->setkey(tfm, key, keylen);
out:
if (unlikely(err)) { if (unlikely(err)) {
skcipher_set_needkey(tfm); skcipher_set_needkey(tfm);
return err; return err;
@ -649,6 +659,8 @@ int crypto_skcipher_encrypt(struct skcipher_request *req)
if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
ret = -ENOKEY; ret = -ENOKEY;
else if (alg->co.base.cra_type != &crypto_skcipher_type)
ret = crypto_lskcipher_encrypt_sg(req);
else else
ret = alg->encrypt(req); ret = alg->encrypt(req);
@ -671,6 +683,8 @@ int crypto_skcipher_decrypt(struct skcipher_request *req)
if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
ret = -ENOKEY; ret = -ENOKEY;
else if (alg->co.base.cra_type != &crypto_skcipher_type)
ret = crypto_lskcipher_decrypt_sg(req);
else else
ret = alg->decrypt(req); ret = alg->decrypt(req);
@ -693,6 +707,9 @@ static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
skcipher_set_needkey(skcipher); skcipher_set_needkey(skcipher);
if (tfm->__crt_alg->cra_type != &crypto_skcipher_type)
return crypto_init_lskcipher_ops_sg(tfm);
if (alg->exit) if (alg->exit)
skcipher->base.exit = crypto_skcipher_exit_tfm; skcipher->base.exit = crypto_skcipher_exit_tfm;
@ -702,6 +719,14 @@ static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
return 0; return 0;
} }
static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
{
if (alg->cra_type != &crypto_skcipher_type)
return sizeof(struct crypto_lskcipher *);
return crypto_alg_extsize(alg);
}
static void crypto_skcipher_free_instance(struct crypto_instance *inst) static void crypto_skcipher_free_instance(struct crypto_instance *inst)
{ {
struct skcipher_instance *skcipher = struct skcipher_instance *skcipher =
@ -770,7 +795,7 @@ static int __maybe_unused crypto_skcipher_report_stat(
} }
static const struct crypto_type crypto_skcipher_type = { static const struct crypto_type crypto_skcipher_type = {
.extsize = crypto_alg_extsize, .extsize = crypto_skcipher_extsize,
.init_tfm = crypto_skcipher_init_tfm, .init_tfm = crypto_skcipher_init_tfm,
.free = crypto_skcipher_free_instance, .free = crypto_skcipher_free_instance,
#ifdef CONFIG_PROC_FS #ifdef CONFIG_PROC_FS
@ -783,7 +808,7 @@ static const struct crypto_type crypto_skcipher_type = {
.report_stat = crypto_skcipher_report_stat, .report_stat = crypto_skcipher_report_stat,
#endif #endif
.maskclear = ~CRYPTO_ALG_TYPE_MASK, .maskclear = ~CRYPTO_ALG_TYPE_MASK,
.maskset = CRYPTO_ALG_TYPE_MASK, .maskset = CRYPTO_ALG_TYPE_SKCIPHER_MASK,
.type = CRYPTO_ALG_TYPE_SKCIPHER, .type = CRYPTO_ALG_TYPE_SKCIPHER,
.tfmsize = offsetof(struct crypto_skcipher, base), .tfmsize = offsetof(struct crypto_skcipher, base),
}; };
@ -834,27 +859,43 @@ int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
} }
EXPORT_SYMBOL_GPL(crypto_has_skcipher); EXPORT_SYMBOL_GPL(crypto_has_skcipher);
static int skcipher_prepare_alg(struct skcipher_alg *alg) int skcipher_prepare_alg_common(struct skcipher_alg_common *alg)
{ {
struct crypto_istat_cipher *istat = skcipher_get_stat(alg); struct crypto_istat_cipher *istat = skcipher_get_stat_common(alg);
struct crypto_alg *base = &alg->base; struct crypto_alg *base = &alg->base;
if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 || if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8)
alg->walksize > PAGE_SIZE / 8)
return -EINVAL; return -EINVAL;
if (!alg->chunksize) if (!alg->chunksize)
alg->chunksize = base->cra_blocksize; alg->chunksize = base->cra_blocksize;
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
if (IS_ENABLED(CONFIG_CRYPTO_STATS))
memset(istat, 0, sizeof(*istat));
return 0;
}
static int skcipher_prepare_alg(struct skcipher_alg *alg)
{
struct crypto_alg *base = &alg->base;
int err;
err = skcipher_prepare_alg_common(&alg->co);
if (err)
return err;
if (alg->walksize > PAGE_SIZE / 8)
return -EINVAL;
if (!alg->walksize) if (!alg->walksize)
alg->walksize = alg->chunksize; alg->walksize = alg->chunksize;
base->cra_type = &crypto_skcipher_type; base->cra_type = &crypto_skcipher_type;
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER; base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
if (IS_ENABLED(CONFIG_CRYPTO_STATS))
memset(istat, 0, sizeof(*istat));
return 0; return 0;
} }

30
crypto/skcipher.h Normal file
View File

@ -0,0 +1,30 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Cryptographic API.
*
* Copyright (c) 2023 Herbert Xu <herbert@gondor.apana.org.au>
*/
#ifndef _LOCAL_CRYPTO_SKCIPHER_H
#define _LOCAL_CRYPTO_SKCIPHER_H
#include <crypto/internal/skcipher.h>
#include "internal.h"
static inline struct crypto_istat_cipher *skcipher_get_stat_common(
struct skcipher_alg_common *alg)
{
#ifdef CONFIG_CRYPTO_STATS
return &alg->stat;
#else
return NULL;
#endif
}
int crypto_lskcipher_setkey_sg(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen);
int crypto_lskcipher_encrypt_sg(struct skcipher_request *req);
int crypto_lskcipher_decrypt_sg(struct skcipher_request *req);
int crypto_init_lskcipher_ops_sg(struct crypto_tfm *tfm);
int skcipher_prepare_alg_common(struct skcipher_alg_common *alg);
#endif /* _LOCAL_CRYPTO_SKCIPHER_H */

View File

@ -36,10 +36,25 @@ struct skcipher_instance {
}; };
}; };
struct lskcipher_instance {
void (*free)(struct lskcipher_instance *inst);
union {
struct {
char head[offsetof(struct lskcipher_alg, co.base)];
struct crypto_instance base;
} s;
struct lskcipher_alg alg;
};
};
struct crypto_skcipher_spawn { struct crypto_skcipher_spawn {
struct crypto_spawn base; struct crypto_spawn base;
}; };
struct crypto_lskcipher_spawn {
struct crypto_spawn base;
};
struct skcipher_walk { struct skcipher_walk {
union { union {
struct { struct {
@ -80,6 +95,12 @@ static inline struct crypto_instance *skcipher_crypto_instance(
return &inst->s.base; return &inst->s.base;
} }
static inline struct crypto_instance *lskcipher_crypto_instance(
struct lskcipher_instance *inst)
{
return &inst->s.base;
}
static inline struct skcipher_instance *skcipher_alg_instance( static inline struct skcipher_instance *skcipher_alg_instance(
struct crypto_skcipher *skcipher) struct crypto_skcipher *skcipher)
{ {
@ -87,11 +108,23 @@ static inline struct skcipher_instance *skcipher_alg_instance(
struct skcipher_instance, alg); struct skcipher_instance, alg);
} }
static inline struct lskcipher_instance *lskcipher_alg_instance(
struct crypto_lskcipher *lskcipher)
{
return container_of(crypto_lskcipher_alg(lskcipher),
struct lskcipher_instance, alg);
}
static inline void *skcipher_instance_ctx(struct skcipher_instance *inst) static inline void *skcipher_instance_ctx(struct skcipher_instance *inst)
{ {
return crypto_instance_ctx(skcipher_crypto_instance(inst)); return crypto_instance_ctx(skcipher_crypto_instance(inst));
} }
static inline void *lskcipher_instance_ctx(struct lskcipher_instance *inst)
{
return crypto_instance_ctx(lskcipher_crypto_instance(inst));
}
static inline void skcipher_request_complete(struct skcipher_request *req, int err) static inline void skcipher_request_complete(struct skcipher_request *req, int err)
{ {
crypto_request_complete(&req->base, err); crypto_request_complete(&req->base, err);
@ -101,29 +134,56 @@ int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
struct crypto_instance *inst, struct crypto_instance *inst,
const char *name, u32 type, u32 mask); const char *name, u32 type, u32 mask);
int crypto_grab_lskcipher(struct crypto_lskcipher_spawn *spawn,
struct crypto_instance *inst,
const char *name, u32 type, u32 mask);
static inline void crypto_drop_skcipher(struct crypto_skcipher_spawn *spawn) static inline void crypto_drop_skcipher(struct crypto_skcipher_spawn *spawn)
{ {
crypto_drop_spawn(&spawn->base); crypto_drop_spawn(&spawn->base);
} }
static inline void crypto_drop_lskcipher(struct crypto_lskcipher_spawn *spawn)
{
crypto_drop_spawn(&spawn->base);
}
static inline struct skcipher_alg *crypto_skcipher_spawn_alg( static inline struct skcipher_alg *crypto_skcipher_spawn_alg(
struct crypto_skcipher_spawn *spawn) struct crypto_skcipher_spawn *spawn)
{ {
return container_of(spawn->base.alg, struct skcipher_alg, base); return container_of(spawn->base.alg, struct skcipher_alg, base);
} }
static inline struct lskcipher_alg *crypto_lskcipher_spawn_alg(
struct crypto_lskcipher_spawn *spawn)
{
return container_of(spawn->base.alg, struct lskcipher_alg, co.base);
}
static inline struct skcipher_alg *crypto_spawn_skcipher_alg( static inline struct skcipher_alg *crypto_spawn_skcipher_alg(
struct crypto_skcipher_spawn *spawn) struct crypto_skcipher_spawn *spawn)
{ {
return crypto_skcipher_spawn_alg(spawn); return crypto_skcipher_spawn_alg(spawn);
} }
static inline struct lskcipher_alg *crypto_spawn_lskcipher_alg(
struct crypto_lskcipher_spawn *spawn)
{
return crypto_lskcipher_spawn_alg(spawn);
}
static inline struct crypto_skcipher *crypto_spawn_skcipher( static inline struct crypto_skcipher *crypto_spawn_skcipher(
struct crypto_skcipher_spawn *spawn) struct crypto_skcipher_spawn *spawn)
{ {
return crypto_spawn_tfm2(&spawn->base); return crypto_spawn_tfm2(&spawn->base);
} }
static inline struct crypto_lskcipher *crypto_spawn_lskcipher(
struct crypto_lskcipher_spawn *spawn)
{
return crypto_spawn_tfm2(&spawn->base);
}
static inline void crypto_skcipher_set_reqsize( static inline void crypto_skcipher_set_reqsize(
struct crypto_skcipher *skcipher, unsigned int reqsize) struct crypto_skcipher *skcipher, unsigned int reqsize)
{ {
@ -144,6 +204,13 @@ void crypto_unregister_skciphers(struct skcipher_alg *algs, int count);
int skcipher_register_instance(struct crypto_template *tmpl, int skcipher_register_instance(struct crypto_template *tmpl,
struct skcipher_instance *inst); struct skcipher_instance *inst);
int crypto_register_lskcipher(struct lskcipher_alg *alg);
void crypto_unregister_lskcipher(struct lskcipher_alg *alg);
int crypto_register_lskciphers(struct lskcipher_alg *algs, int count);
void crypto_unregister_lskciphers(struct lskcipher_alg *algs, int count);
int lskcipher_register_instance(struct crypto_template *tmpl,
struct lskcipher_instance *inst);
int skcipher_walk_done(struct skcipher_walk *walk, int err); int skcipher_walk_done(struct skcipher_walk *walk, int err);
int skcipher_walk_virt(struct skcipher_walk *walk, int skcipher_walk_virt(struct skcipher_walk *walk,
struct skcipher_request *req, struct skcipher_request *req,
@ -166,6 +233,11 @@ static inline void *crypto_skcipher_ctx(struct crypto_skcipher *tfm)
return crypto_tfm_ctx(&tfm->base); return crypto_tfm_ctx(&tfm->base);
} }
static inline void *crypto_lskcipher_ctx(struct crypto_lskcipher *tfm)
{
return crypto_tfm_ctx(&tfm->base);
}
static inline void *crypto_skcipher_ctx_dma(struct crypto_skcipher *tfm) static inline void *crypto_skcipher_ctx_dma(struct crypto_skcipher *tfm)
{ {
return crypto_tfm_ctx_dma(&tfm->base); return crypto_tfm_ctx_dma(&tfm->base);
@ -209,21 +281,16 @@ static inline unsigned int crypto_skcipher_alg_walksize(
return alg->walksize; return alg->walksize;
} }
/** static inline unsigned int crypto_lskcipher_alg_min_keysize(
* crypto_skcipher_walksize() - obtain walk size struct lskcipher_alg *alg)
* @tfm: cipher handle
*
* In some cases, algorithms can only perform optimally when operating on
* multiple blocks in parallel. This is reflected by the walksize, which
* must be a multiple of the chunksize (or equal if the concern does not
* apply)
*
* Return: walk size in bytes
*/
static inline unsigned int crypto_skcipher_walksize(
struct crypto_skcipher *tfm)
{ {
return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm)); return alg->co.min_keysize;
}
static inline unsigned int crypto_lskcipher_alg_max_keysize(
struct lskcipher_alg *alg)
{
return alg->co.max_keysize;
} }
/* Helpers for simple block cipher modes of operation */ /* Helpers for simple block cipher modes of operation */
@ -249,5 +316,24 @@ static inline struct crypto_alg *skcipher_ialg_simple(
return crypto_spawn_cipher_alg(spawn); return crypto_spawn_cipher_alg(spawn);
} }
static inline struct crypto_lskcipher *lskcipher_cipher_simple(
struct crypto_lskcipher *tfm)
{
struct crypto_lskcipher **ctx = crypto_lskcipher_ctx(tfm);
return *ctx;
}
struct lskcipher_instance *lskcipher_alloc_instance_simple(
struct crypto_template *tmpl, struct rtattr **tb);
static inline struct lskcipher_alg *lskcipher_ialg_simple(
struct lskcipher_instance *inst)
{
struct crypto_lskcipher_spawn *spawn = lskcipher_instance_ctx(inst);
return crypto_lskcipher_spawn_alg(spawn);
}
#endif /* _CRYPTO_INTERNAL_SKCIPHER_H */ #endif /* _CRYPTO_INTERNAL_SKCIPHER_H */

View File

@ -49,6 +49,10 @@ struct crypto_sync_skcipher {
struct crypto_skcipher base; struct crypto_skcipher base;
}; };
struct crypto_lskcipher {
struct crypto_tfm base;
};
/* /*
* struct crypto_istat_cipher - statistics for cipher algorithm * struct crypto_istat_cipher - statistics for cipher algorithm
* @encrypt_cnt: number of encrypt requests * @encrypt_cnt: number of encrypt requests
@ -65,6 +69,43 @@ struct crypto_istat_cipher {
atomic64_t err_cnt; atomic64_t err_cnt;
}; };
#ifdef CONFIG_CRYPTO_STATS
#define SKCIPHER_ALG_COMMON_STAT struct crypto_istat_cipher stat;
#else
#define SKCIPHER_ALG_COMMON_STAT
#endif
/*
* struct skcipher_alg_common - common properties of skcipher_alg
* @min_keysize: Minimum key size supported by the transformation. This is the
* smallest key length supported by this transformation algorithm.
* This must be set to one of the pre-defined values as this is
* not hardware specific. Possible values for this field can be
* found via git grep "_MIN_KEY_SIZE" include/crypto/
* @max_keysize: Maximum key size supported by the transformation. This is the
* largest key length supported by this transformation algorithm.
* This must be set to one of the pre-defined values as this is
* not hardware specific. Possible values for this field can be
* found via git grep "_MAX_KEY_SIZE" include/crypto/
* @ivsize: IV size applicable for transformation. The consumer must provide an
* IV of exactly that size to perform the encrypt or decrypt operation.
* @chunksize: Equal to the block size except for stream ciphers such as
* CTR where it is set to the underlying block size.
* @stat: Statistics for cipher algorithm
* @base: Definition of a generic crypto algorithm.
*/
#define SKCIPHER_ALG_COMMON { \
unsigned int min_keysize; \
unsigned int max_keysize; \
unsigned int ivsize; \
unsigned int chunksize; \
\
SKCIPHER_ALG_COMMON_STAT \
\
struct crypto_alg base; \
}
struct skcipher_alg_common SKCIPHER_ALG_COMMON;
/** /**
* struct skcipher_alg - symmetric key cipher definition * struct skcipher_alg - symmetric key cipher definition
* @min_keysize: Minimum key size supported by the transformation. This is the * @min_keysize: Minimum key size supported by the transformation. This is the
@ -120,6 +161,7 @@ struct crypto_istat_cipher {
* in parallel. Should be a multiple of chunksize. * in parallel. Should be a multiple of chunksize.
* @stat: Statistics for cipher algorithm * @stat: Statistics for cipher algorithm
* @base: Definition of a generic crypto algorithm. * @base: Definition of a generic crypto algorithm.
* @co: see struct skcipher_alg_common
* *
* All fields except @ivsize are mandatory and must be filled. * All fields except @ivsize are mandatory and must be filled.
*/ */
@ -131,17 +173,55 @@ struct skcipher_alg {
int (*init)(struct crypto_skcipher *tfm); int (*init)(struct crypto_skcipher *tfm);
void (*exit)(struct crypto_skcipher *tfm); void (*exit)(struct crypto_skcipher *tfm);
unsigned int min_keysize;
unsigned int max_keysize;
unsigned int ivsize;
unsigned int chunksize;
unsigned int walksize; unsigned int walksize;
#ifdef CONFIG_CRYPTO_STATS union {
struct crypto_istat_cipher stat; struct SKCIPHER_ALG_COMMON;
#endif struct skcipher_alg_common co;
};
};
struct crypto_alg base; /**
* struct lskcipher_alg - linear symmetric key cipher definition
* @setkey: Set key for the transformation. This function is used to either
* program a supplied key into the hardware or store the key in the
* transformation context for programming it later. Note that this
* function does modify the transformation context. This function can
* be called multiple times during the existence of the transformation
* object, so one must make sure the key is properly reprogrammed into
* the hardware. This function is also responsible for checking the key
* length for validity. In case a software fallback was put in place in
* the @cra_init call, this function might need to use the fallback if
* the algorithm doesn't support all of the key sizes.
* @encrypt: Encrypt a number of bytes. This function is used to encrypt
* the supplied data. This function shall not modify
* the transformation context, as this function may be called
* in parallel with the same transformation object. Data
* may be left over if length is not a multiple of blocks
* and there is more to come (final == false). The number of
* left-over bytes should be returned in case of success.
* @decrypt: Decrypt a number of bytes. This is a reverse counterpart to
* @encrypt and the conditions are exactly the same.
* @init: Initialize the cryptographic transformation object. This function
* is used to initialize the cryptographic transformation object.
* This function is called only once at the instantiation time, right
* after the transformation context was allocated.
* @exit: Deinitialize the cryptographic transformation object. This is a
* counterpart to @init, used to remove various changes set in
* @init.
* @co: see struct skcipher_alg_common
*/
struct lskcipher_alg {
int (*setkey)(struct crypto_lskcipher *tfm, const u8 *key,
unsigned int keylen);
int (*encrypt)(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv, bool final);
int (*decrypt)(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv, bool final);
int (*init)(struct crypto_lskcipher *tfm);
void (*exit)(struct crypto_lskcipher *tfm);
struct skcipher_alg_common co;
}; };
#define MAX_SYNC_SKCIPHER_REQSIZE 384 #define MAX_SYNC_SKCIPHER_REQSIZE 384
@ -213,12 +293,36 @@ struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name, struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
u32 type, u32 mask); u32 type, u32 mask);
/**
* crypto_alloc_lskcipher() - allocate linear symmetric key cipher handle
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
* lskcipher
* @type: specifies the type of the cipher
* @mask: specifies the mask for the cipher
*
* Allocate a cipher handle for an lskcipher. The returned struct
* crypto_lskcipher is the cipher handle that is required for any subsequent
* API invocation for that lskcipher.
*
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
* of an error, PTR_ERR() returns the error code.
*/
struct crypto_lskcipher *crypto_alloc_lskcipher(const char *alg_name,
u32 type, u32 mask);
static inline struct crypto_tfm *crypto_skcipher_tfm( static inline struct crypto_tfm *crypto_skcipher_tfm(
struct crypto_skcipher *tfm) struct crypto_skcipher *tfm)
{ {
return &tfm->base; return &tfm->base;
} }
static inline struct crypto_tfm *crypto_lskcipher_tfm(
struct crypto_lskcipher *tfm)
{
return &tfm->base;
}
/** /**
* crypto_free_skcipher() - zeroize and free cipher handle * crypto_free_skcipher() - zeroize and free cipher handle
* @tfm: cipher handle to be freed * @tfm: cipher handle to be freed
@ -235,6 +339,17 @@ static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
crypto_free_skcipher(&tfm->base); crypto_free_skcipher(&tfm->base);
} }
/**
* crypto_free_lskcipher() - zeroize and free cipher handle
* @tfm: cipher handle to be freed
*
* If @tfm is a NULL or error pointer, this function does nothing.
*/
static inline void crypto_free_lskcipher(struct crypto_lskcipher *tfm)
{
crypto_destroy_tfm(tfm, crypto_lskcipher_tfm(tfm));
}
/** /**
* crypto_has_skcipher() - Search for the availability of an skcipher. * crypto_has_skcipher() - Search for the availability of an skcipher.
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
@ -253,6 +368,19 @@ static inline const char *crypto_skcipher_driver_name(
return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm)); return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
} }
static inline const char *crypto_lskcipher_driver_name(
struct crypto_lskcipher *tfm)
{
return crypto_tfm_alg_driver_name(crypto_lskcipher_tfm(tfm));
}
static inline struct skcipher_alg_common *crypto_skcipher_alg_common(
struct crypto_skcipher *tfm)
{
return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
struct skcipher_alg_common, base);
}
static inline struct skcipher_alg *crypto_skcipher_alg( static inline struct skcipher_alg *crypto_skcipher_alg(
struct crypto_skcipher *tfm) struct crypto_skcipher *tfm)
{ {
@ -260,11 +388,24 @@ static inline struct skcipher_alg *crypto_skcipher_alg(
struct skcipher_alg, base); struct skcipher_alg, base);
} }
static inline struct lskcipher_alg *crypto_lskcipher_alg(
struct crypto_lskcipher *tfm)
{
return container_of(crypto_lskcipher_tfm(tfm)->__crt_alg,
struct lskcipher_alg, co.base);
}
static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg) static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
{ {
return alg->ivsize; return alg->ivsize;
} }
static inline unsigned int crypto_lskcipher_alg_ivsize(
struct lskcipher_alg *alg)
{
return alg->co.ivsize;
}
/** /**
* crypto_skcipher_ivsize() - obtain IV size * crypto_skcipher_ivsize() - obtain IV size
* @tfm: cipher handle * @tfm: cipher handle
@ -276,7 +417,7 @@ static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
*/ */
static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm) static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
{ {
return crypto_skcipher_alg(tfm)->ivsize; return crypto_skcipher_alg_common(tfm)->ivsize;
} }
static inline unsigned int crypto_sync_skcipher_ivsize( static inline unsigned int crypto_sync_skcipher_ivsize(
@ -285,6 +426,21 @@ static inline unsigned int crypto_sync_skcipher_ivsize(
return crypto_skcipher_ivsize(&tfm->base); return crypto_skcipher_ivsize(&tfm->base);
} }
/**
* crypto_lskcipher_ivsize() - obtain IV size
* @tfm: cipher handle
*
* The size of the IV for the lskcipher referenced by the cipher handle is
* returned. This IV size may be zero if the cipher does not need an IV.
*
* Return: IV size in bytes
*/
static inline unsigned int crypto_lskcipher_ivsize(
struct crypto_lskcipher *tfm)
{
return crypto_lskcipher_alg(tfm)->co.ivsize;
}
/** /**
* crypto_skcipher_blocksize() - obtain block size of cipher * crypto_skcipher_blocksize() - obtain block size of cipher
* @tfm: cipher handle * @tfm: cipher handle
@ -301,12 +457,34 @@ static inline unsigned int crypto_skcipher_blocksize(
return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm)); return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
} }
/**
* crypto_lskcipher_blocksize() - obtain block size of cipher
* @tfm: cipher handle
*
* The block size for the lskcipher referenced with the cipher handle is
* returned. The caller may use that information to allocate appropriate
* memory for the data returned by the encryption or decryption operation
*
* Return: block size of cipher
*/
static inline unsigned int crypto_lskcipher_blocksize(
struct crypto_lskcipher *tfm)
{
return crypto_tfm_alg_blocksize(crypto_lskcipher_tfm(tfm));
}
static inline unsigned int crypto_skcipher_alg_chunksize( static inline unsigned int crypto_skcipher_alg_chunksize(
struct skcipher_alg *alg) struct skcipher_alg *alg)
{ {
return alg->chunksize; return alg->chunksize;
} }
static inline unsigned int crypto_lskcipher_alg_chunksize(
struct lskcipher_alg *alg)
{
return alg->co.chunksize;
}
/** /**
* crypto_skcipher_chunksize() - obtain chunk size * crypto_skcipher_chunksize() - obtain chunk size
* @tfm: cipher handle * @tfm: cipher handle
@ -321,7 +499,24 @@ static inline unsigned int crypto_skcipher_alg_chunksize(
static inline unsigned int crypto_skcipher_chunksize( static inline unsigned int crypto_skcipher_chunksize(
struct crypto_skcipher *tfm) struct crypto_skcipher *tfm)
{ {
return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm)); return crypto_skcipher_alg_common(tfm)->chunksize;
}
/**
* crypto_lskcipher_chunksize() - obtain chunk size
* @tfm: cipher handle
*
* The block size is set to one for ciphers such as CTR. However,
* you still need to provide incremental updates in multiples of
* the underlying block size as the IV does not have sub-block
* granularity. This is known in this API as the chunk size.
*
* Return: chunk size in bytes
*/
static inline unsigned int crypto_lskcipher_chunksize(
struct crypto_lskcipher *tfm)
{
return crypto_lskcipher_alg_chunksize(crypto_lskcipher_alg(tfm));
} }
static inline unsigned int crypto_sync_skcipher_blocksize( static inline unsigned int crypto_sync_skcipher_blocksize(
@ -336,6 +531,12 @@ static inline unsigned int crypto_skcipher_alignmask(
return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm)); return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
} }
static inline unsigned int crypto_lskcipher_alignmask(
struct crypto_lskcipher *tfm)
{
return crypto_tfm_alg_alignmask(crypto_lskcipher_tfm(tfm));
}
static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm) static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
{ {
return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm)); return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
@ -371,6 +572,23 @@ static inline void crypto_sync_skcipher_clear_flags(
crypto_skcipher_clear_flags(&tfm->base, flags); crypto_skcipher_clear_flags(&tfm->base, flags);
} }
static inline u32 crypto_lskcipher_get_flags(struct crypto_lskcipher *tfm)
{
return crypto_tfm_get_flags(crypto_lskcipher_tfm(tfm));
}
static inline void crypto_lskcipher_set_flags(struct crypto_lskcipher *tfm,
u32 flags)
{
crypto_tfm_set_flags(crypto_lskcipher_tfm(tfm), flags);
}
static inline void crypto_lskcipher_clear_flags(struct crypto_lskcipher *tfm,
u32 flags)
{
crypto_tfm_clear_flags(crypto_lskcipher_tfm(tfm), flags);
}
/** /**
* crypto_skcipher_setkey() - set key for cipher * crypto_skcipher_setkey() - set key for cipher
* @tfm: cipher handle * @tfm: cipher handle
@ -396,16 +614,47 @@ static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
return crypto_skcipher_setkey(&tfm->base, key, keylen); return crypto_skcipher_setkey(&tfm->base, key, keylen);
} }
/**
* crypto_lskcipher_setkey() - set key for cipher
* @tfm: cipher handle
* @key: buffer holding the key
* @keylen: length of the key in bytes
*
* The caller provided key is set for the lskcipher referenced by the cipher
* handle.
*
* Note, the key length determines the cipher type. Many block ciphers implement
* different cipher modes depending on the key size, such as AES-128 vs AES-192
* vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
* is performed.
*
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
*/
int crypto_lskcipher_setkey(struct crypto_lskcipher *tfm,
const u8 *key, unsigned int keylen);
static inline unsigned int crypto_skcipher_min_keysize( static inline unsigned int crypto_skcipher_min_keysize(
struct crypto_skcipher *tfm) struct crypto_skcipher *tfm)
{ {
return crypto_skcipher_alg(tfm)->min_keysize; return crypto_skcipher_alg_common(tfm)->min_keysize;
} }
static inline unsigned int crypto_skcipher_max_keysize( static inline unsigned int crypto_skcipher_max_keysize(
struct crypto_skcipher *tfm) struct crypto_skcipher *tfm)
{ {
return crypto_skcipher_alg(tfm)->max_keysize; return crypto_skcipher_alg_common(tfm)->max_keysize;
}
static inline unsigned int crypto_lskcipher_min_keysize(
struct crypto_lskcipher *tfm)
{
return crypto_lskcipher_alg(tfm)->co.min_keysize;
}
static inline unsigned int crypto_lskcipher_max_keysize(
struct crypto_lskcipher *tfm)
{
return crypto_lskcipher_alg(tfm)->co.max_keysize;
} }
/** /**
@ -457,6 +706,42 @@ int crypto_skcipher_encrypt(struct skcipher_request *req);
*/ */
int crypto_skcipher_decrypt(struct skcipher_request *req); int crypto_skcipher_decrypt(struct skcipher_request *req);
/**
* crypto_lskcipher_encrypt() - encrypt plaintext
* @tfm: lskcipher handle
* @src: source buffer
* @dst: destination buffer
* @len: number of bytes to process
* @iv: IV for the cipher operation which must comply with the IV size defined
* by crypto_lskcipher_ivsize
*
* Encrypt plaintext data using the lskcipher handle.
*
* Return: >=0 if the cipher operation was successful, if positive
* then this many bytes have been left unprocessed;
* < 0 if an error occurred
*/
int crypto_lskcipher_encrypt(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv);
/**
* crypto_lskcipher_decrypt() - decrypt ciphertext
* @tfm: lskcipher handle
* @src: source buffer
* @dst: destination buffer
* @len: number of bytes to process
* @iv: IV for the cipher operation which must comply with the IV size defined
* by crypto_lskcipher_ivsize
*
* Decrypt ciphertext data using the lskcipher handle.
*
* Return: >=0 if the cipher operation was successful, if positive
* then this many bytes have been left unprocessed;
* < 0 if an error occurred
*/
int crypto_lskcipher_decrypt(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv);
/** /**
* DOC: Symmetric Key Cipher Request Handle * DOC: Symmetric Key Cipher Request Handle
* *

View File

@ -24,6 +24,7 @@
#define CRYPTO_ALG_TYPE_CIPHER 0x00000001 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
#define CRYPTO_ALG_TYPE_AEAD 0x00000003 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
#define CRYPTO_ALG_TYPE_LSKCIPHER 0x00000004
#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
#define CRYPTO_ALG_TYPE_AKCIPHER 0x00000006 #define CRYPTO_ALG_TYPE_AKCIPHER 0x00000006
#define CRYPTO_ALG_TYPE_SIG 0x00000007 #define CRYPTO_ALG_TYPE_SIG 0x00000007