kernel-aes67/include/asm-mips/pgtable-64.h

237 lines
7.7 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle
* Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc.
*/
#ifndef _ASM_PGTABLE_64_H
#define _ASM_PGTABLE_64_H
#include <linux/config.h>
#include <linux/linkage.h>
#include <asm/addrspace.h>
#include <asm/page.h>
#include <asm/cachectl.h>
#include <asm-generic/pgtable-nopud.h>
/*
* Each address space has 2 4K pages as its page directory, giving 1024
* (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a
* single 4K page, giving 512 (== PTRS_PER_PMD) 8 byte pointers to page
* tables. Each page table is also a single 4K page, giving 512 (==
* PTRS_PER_PTE) 8 byte ptes. Each pud entry is initialized to point to
* invalid_pmd_table, each pmd entry is initialized to point to
* invalid_pte_table, each pte is initialized to 0. When memory is low,
* and a pmd table or a page table allocation fails, empty_bad_pmd_table
* and empty_bad_page_table is returned back to higher layer code, so
* that the failure is recognized later on. Linux does not seem to
* handle these failures very well though. The empty_bad_page_table has
* invalid pte entries in it, to force page faults.
*
* Kernel mappings: kernel mappings are held in the swapper_pg_table.
* The layout is identical to userspace except it's indexed with the
* fault address - VMALLOC_START.
*/
/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT + PTE_ORDER - 3))
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT + PMD_ORDER - 3))
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* For 4kB page size we use a 3 level page tree and an 8kB pud, which
* permits us mapping 40 bits of virtual address space.
*
* We used to implement 41 bits by having an order 1 pmd level but that seemed
* rather pointless.
*
* For 8kB page size we use a 3 level page tree which permits a total of
* 8TB of address space. Alternatively a 33-bit / 8GB organization using
* two levels would be easy to implement.
*
* For 16kB page size we use a 2 level page tree which permits a total of
* 36 bits of virtual address space. We could add a third leve. but it seems
* like at the moment there's no need for this.
*
* For 64kB page size we use a 2 level page table tree for a total of 42 bits
* of virtual address space.
*/
#ifdef CONFIG_PAGE_SIZE_4KB
#define PGD_ORDER 1
#define PUD_ORDER aieeee_attempt_to_allocate_pud
#define PMD_ORDER 0
#define PTE_ORDER 0
#endif
#ifdef CONFIG_PAGE_SIZE_8KB
#define PGD_ORDER 0
#define PUD_ORDER aieeee_attempt_to_allocate_pud
#define PMD_ORDER 0
#define PTE_ORDER 0
#endif
#ifdef CONFIG_PAGE_SIZE_16KB
#define PGD_ORDER 0
#define PUD_ORDER aieeee_attempt_to_allocate_pud
#define PMD_ORDER 0
#define PTE_ORDER 0
#endif
#ifdef CONFIG_PAGE_SIZE_64KB
#define PGD_ORDER 0
#define PUD_ORDER aieeee_attempt_to_allocate_pud
#define PMD_ORDER 0
#define PTE_ORDER 0
#endif
#define PTRS_PER_PGD ((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t))
#define PTRS_PER_PMD ((PAGE_SIZE << PMD_ORDER) / sizeof(pmd_t))
#define PTRS_PER_PTE ((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t))
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
#define FIRST_USER_ADDRESS 0
#define VMALLOC_START XKSEG
#define VMALLOC_END \
(VMALLOC_START + PTRS_PER_PGD * PTRS_PER_PMD * PTRS_PER_PTE * PAGE_SIZE)
#define pte_ERROR(e) \
printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
extern pte_t invalid_pte_table[PTRS_PER_PTE];
extern pte_t empty_bad_page_table[PTRS_PER_PTE];
extern pmd_t invalid_pmd_table[PTRS_PER_PMD];
extern pmd_t empty_bad_pmd_table[PTRS_PER_PMD];
/*
* Empty pmd entries point to the invalid_pte_table.
*/
static inline int pmd_none(pmd_t pmd)
{
return pmd_val(pmd) == (unsigned long) invalid_pte_table;
}
#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
static inline int pmd_present(pmd_t pmd)
{
return pmd_val(pmd) != (unsigned long) invalid_pte_table;
}
static inline void pmd_clear(pmd_t *pmdp)
{
pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);
}
/*
* Empty pgd entries point to the invalid_pmd_table.
*/
static inline int pud_none(pud_t pud)
{
return pud_val(pud) == (unsigned long) invalid_pmd_table;
}
static inline int pud_bad(pud_t pud)
{
return pud_val(pud) & ~PAGE_MASK;
}
static inline int pud_present(pud_t pud)
{
return pud_val(pud) != (unsigned long) invalid_pmd_table;
}
static inline void pud_clear(pud_t *pudp)
{
pud_val(*pudp) = ((unsigned long) invalid_pmd_table);
}
#define pte_page(x) pfn_to_page((unsigned long)((pte_val(x) >> PAGE_SHIFT)))
#ifdef CONFIG_CPU_VR41XX
#define pte_pfn(x) ((unsigned long)((x).pte >> (PAGE_SHIFT + 2)))
#define pfn_pte(pfn, prot) __pte(((pfn) << (PAGE_SHIFT + 2)) | pgprot_val(prot))
#else
#define pte_pfn(x) ((unsigned long)((x).pte >> PAGE_SHIFT))
#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#endif
#define __pgd_offset(address) pgd_index(address)
#define page_pte(page) page_pte_prot(page, __pgprot(0))
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, 0)
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
/* to find an entry in a page-table-directory */
#define pgd_offset(mm,addr) ((mm)->pgd + pgd_index(addr))
static inline unsigned long pud_page(pud_t pud)
{
return pud_val(pud);
}
/* Find an entry in the second-level page table.. */
static inline pmd_t *pmd_offset(pud_t * pud, unsigned long address)
{
return (pmd_t *) pud_page(*pud) +
((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
}
/* Find an entry in the third-level page table.. */
#define __pte_offset(address) \
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset(dir, address) \
((pte_t *) (pmd_page_kernel(*dir)) + __pte_offset(address))
#define pte_offset_kernel(dir, address) \
((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address))
#define pte_offset_map(dir, address) \
((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
#define pte_offset_map_nested(dir, address) \
((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
#define pte_unmap(pte) ((void)(pte))
#define pte_unmap_nested(pte) ((void)(pte))
/*
* Initialize a new pgd / pmd table with invalid pointers.
*/
extern void pgd_init(unsigned long page);
extern void pmd_init(unsigned long page, unsigned long pagetable);
/*
* Non-present pages: high 24 bits are offset, next 8 bits type,
* low 32 bits zero.
*/
static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
{ pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
#define __swp_type(x) (((x).val >> 32) & 0xff)
#define __swp_offset(x) ((x).val >> 40)
#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
/*
* Bits 0, 1, 2, 7 and 8 are taken, split up the 32 bits of offset
* into this range:
*/
#define PTE_FILE_MAX_BITS 32
#define pte_to_pgoff(_pte) \
((((_pte).pte >> 3) & 0x1f ) + (((_pte).pte >> 9) << 6 ))
#define pgoff_to_pte(off) \
((pte_t) { (((off) & 0x1f) << 3) + (((off) >> 6) << 9) + _PAGE_FILE })
#endif /* _ASM_PGTABLE_64_H */