2006-01-09 23:52:31 -05:00
|
|
|
/*
|
|
|
|
* include/linux/ktime.h
|
|
|
|
*
|
|
|
|
* ktime_t - nanosecond-resolution time format.
|
|
|
|
*
|
|
|
|
* Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
|
|
|
|
* Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
|
|
|
|
*
|
|
|
|
* data type definitions, declarations, prototypes and macros.
|
|
|
|
*
|
|
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
|
|
*
|
|
|
|
* For licencing details see kernel-base/COPYING
|
|
|
|
*/
|
|
|
|
#ifndef _LINUX_KTIME_H
|
|
|
|
#define _LINUX_KTIME_H
|
|
|
|
|
|
|
|
#include <linux/time.h>
|
|
|
|
#include <linux/jiffies.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ktime_t:
|
|
|
|
*
|
|
|
|
* On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
|
|
|
|
* internal representation of time values in scalar nanoseconds. The
|
|
|
|
* design plays out best on 64-bit CPUs, where most conversions are
|
|
|
|
* NOPs and most arithmetic ktime_t operations are plain arithmetic
|
|
|
|
* operations.
|
|
|
|
*
|
|
|
|
* On 32-bit CPUs an optimized representation of the timespec structure
|
|
|
|
* is used to avoid expensive conversions from and to timespecs. The
|
|
|
|
* endian-aware order of the tv struct members is choosen to allow
|
|
|
|
* mathematical operations on the tv64 member of the union too, which
|
|
|
|
* for certain operations produces better code.
|
|
|
|
*
|
|
|
|
* For architectures with efficient support for 64/32-bit conversions the
|
|
|
|
* plain scalar nanosecond based representation can be selected by the
|
|
|
|
* config switch CONFIG_KTIME_SCALAR.
|
|
|
|
*/
|
|
|
|
typedef union {
|
|
|
|
s64 tv64;
|
|
|
|
#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
|
|
|
|
struct {
|
|
|
|
# ifdef __BIG_ENDIAN
|
|
|
|
s32 sec, nsec;
|
|
|
|
# else
|
|
|
|
s32 nsec, sec;
|
|
|
|
# endif
|
|
|
|
} tv;
|
|
|
|
#endif
|
|
|
|
} ktime_t;
|
|
|
|
|
|
|
|
#define KTIME_MAX (~((u64)1 << 63))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ktime_t definitions when using the 64-bit scalar representation:
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
|
|
|
|
|
|
|
|
/* Define a ktime_t variable and initialize it to zero: */
|
|
|
|
#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 }
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
|
|
|
|
*
|
|
|
|
* @secs: seconds to set
|
|
|
|
* @nsecs: nanoseconds to set
|
|
|
|
*
|
|
|
|
* Return the ktime_t representation of the value
|
|
|
|
*/
|
|
|
|
static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
|
|
|
|
{
|
|
|
|
return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Subtract two ktime_t variables. rem = lhs -rhs: */
|
|
|
|
#define ktime_sub(lhs, rhs) \
|
|
|
|
({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
|
|
|
|
|
|
|
|
/* Add two ktime_t variables. res = lhs + rhs: */
|
|
|
|
#define ktime_add(lhs, rhs) \
|
|
|
|
({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add a ktime_t variable and a scalar nanosecond value.
|
|
|
|
* res = kt + nsval:
|
|
|
|
*/
|
|
|
|
#define ktime_add_ns(kt, nsval) \
|
|
|
|
({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
|
|
|
|
|
|
|
|
/* convert a timespec to ktime_t format: */
|
|
|
|
#define timespec_to_ktime(ts) ktime_set((ts).tv_sec, (ts).tv_nsec)
|
|
|
|
|
|
|
|
/* convert a timeval to ktime_t format: */
|
|
|
|
#define timeval_to_ktime(tv) ktime_set((tv).tv_sec, (tv).tv_usec * 1000)
|
|
|
|
|
|
|
|
/* Map the ktime_t to timespec conversion to ns_to_timespec function */
|
|
|
|
#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
|
|
|
|
|
|
|
|
/* Map the ktime_t to timeval conversion to ns_to_timeval function */
|
|
|
|
#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
|
|
|
|
|
|
|
|
/* Map the ktime_t to clock_t conversion to the inline in jiffies.h: */
|
|
|
|
#define ktime_to_clock_t(kt) nsec_to_clock_t((kt).tv64)
|
|
|
|
|
|
|
|
/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
|
|
|
|
#define ktime_to_ns(kt) ((kt).tv64)
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Helper macros/inlines to get the ktime_t math right in the timespec
|
|
|
|
* representation. The macros are sometimes ugly - their actual use is
|
|
|
|
* pretty okay-ish, given the circumstances. We do all this for
|
|
|
|
* performance reasons. The pure scalar nsec_t based code was nice and
|
|
|
|
* simple, but created too many 64-bit / 32-bit conversions and divisions.
|
|
|
|
*
|
|
|
|
* Be especially aware that negative values are represented in a way
|
|
|
|
* that the tv.sec field is negative and the tv.nsec field is greater
|
|
|
|
* or equal to zero but less than nanoseconds per second. This is the
|
|
|
|
* same representation which is used by timespecs.
|
|
|
|
*
|
|
|
|
* tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Define a ktime_t variable and initialize it to zero: */
|
|
|
|
#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 }
|
|
|
|
|
|
|
|
/* Set a ktime_t variable to a value in sec/nsec representation: */
|
|
|
|
static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
|
|
|
|
{
|
|
|
|
return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ktime_sub - subtract two ktime_t variables
|
|
|
|
*
|
|
|
|
* @lhs: minuend
|
|
|
|
* @rhs: subtrahend
|
|
|
|
*
|
|
|
|
* Returns the remainder of the substraction
|
|
|
|
*/
|
|
|
|
static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
|
|
|
|
{
|
|
|
|
ktime_t res;
|
|
|
|
|
|
|
|
res.tv64 = lhs.tv64 - rhs.tv64;
|
|
|
|
if (res.tv.nsec < 0)
|
|
|
|
res.tv.nsec += NSEC_PER_SEC;
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ktime_add - add two ktime_t variables
|
|
|
|
*
|
|
|
|
* @add1: addend1
|
|
|
|
* @add2: addend2
|
|
|
|
*
|
|
|
|
* Returns the sum of addend1 and addend2
|
|
|
|
*/
|
|
|
|
static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
|
|
|
|
{
|
|
|
|
ktime_t res;
|
|
|
|
|
|
|
|
res.tv64 = add1.tv64 + add2.tv64;
|
|
|
|
/*
|
|
|
|
* performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
|
|
|
|
* so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
|
|
|
|
*
|
|
|
|
* it's equivalent to:
|
|
|
|
* tv.nsec -= NSEC_PER_SEC
|
|
|
|
* tv.sec ++;
|
|
|
|
*/
|
|
|
|
if (res.tv.nsec >= NSEC_PER_SEC)
|
|
|
|
res.tv64 += (u32)-NSEC_PER_SEC;
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
|
|
|
|
*
|
|
|
|
* @kt: addend
|
|
|
|
* @nsec: the scalar nsec value to add
|
|
|
|
*
|
|
|
|
* Returns the sum of kt and nsec in ktime_t format
|
|
|
|
*/
|
|
|
|
extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* timespec_to_ktime - convert a timespec to ktime_t format
|
|
|
|
*
|
|
|
|
* @ts: the timespec variable to convert
|
|
|
|
*
|
|
|
|
* Returns a ktime_t variable with the converted timespec value
|
|
|
|
*/
|
|
|
|
static inline ktime_t timespec_to_ktime(const struct timespec ts)
|
|
|
|
{
|
|
|
|
return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
|
|
|
|
.nsec = (s32)ts.tv_nsec } };
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* timeval_to_ktime - convert a timeval to ktime_t format
|
|
|
|
*
|
|
|
|
* @tv: the timeval variable to convert
|
|
|
|
*
|
|
|
|
* Returns a ktime_t variable with the converted timeval value
|
|
|
|
*/
|
|
|
|
static inline ktime_t timeval_to_ktime(const struct timeval tv)
|
|
|
|
{
|
|
|
|
return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
|
|
|
|
.nsec = (s32)tv.tv_usec * 1000 } };
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ktime_to_timespec - convert a ktime_t variable to timespec format
|
|
|
|
*
|
|
|
|
* @kt: the ktime_t variable to convert
|
|
|
|
*
|
|
|
|
* Returns the timespec representation of the ktime value
|
|
|
|
*/
|
|
|
|
static inline struct timespec ktime_to_timespec(const ktime_t kt)
|
|
|
|
{
|
|
|
|
return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
|
|
|
|
.tv_nsec = (long) kt.tv.nsec };
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ktime_to_timeval - convert a ktime_t variable to timeval format
|
|
|
|
*
|
|
|
|
* @kt: the ktime_t variable to convert
|
|
|
|
*
|
|
|
|
* Returns the timeval representation of the ktime value
|
|
|
|
*/
|
|
|
|
static inline struct timeval ktime_to_timeval(const ktime_t kt)
|
|
|
|
{
|
|
|
|
return (struct timeval) {
|
|
|
|
.tv_sec = (time_t) kt.tv.sec,
|
|
|
|
.tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ktime_to_clock_t - convert a ktime_t variable to clock_t format
|
|
|
|
* @kt: the ktime_t variable to convert
|
|
|
|
*
|
|
|
|
* Returns a clock_t variable with the converted value
|
|
|
|
*/
|
|
|
|
static inline clock_t ktime_to_clock_t(const ktime_t kt)
|
|
|
|
{
|
|
|
|
return nsec_to_clock_t( (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
|
|
|
|
* @kt: the ktime_t variable to convert
|
|
|
|
*
|
|
|
|
* Returns the scalar nanoseconds representation of kt
|
|
|
|
*/
|
|
|
|
static inline u64 ktime_to_ns(const ktime_t kt)
|
|
|
|
{
|
|
|
|
return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2006-01-09 23:52:32 -05:00
|
|
|
/*
|
|
|
|
* The resolution of the clocks. The resolution value is returned in
|
|
|
|
* the clock_getres() system call to give application programmers an
|
|
|
|
* idea of the (in)accuracy of timers. Timer values are rounded up to
|
|
|
|
* this resolution values.
|
|
|
|
*/
|
|
|
|
#define KTIME_REALTIME_RES (NSEC_PER_SEC/HZ)
|
|
|
|
#define KTIME_MONOTONIC_RES (NSEC_PER_SEC/HZ)
|
|
|
|
|
|
|
|
/* Get the monotonic time in timespec format: */
|
|
|
|
extern void ktime_get_ts(struct timespec *ts);
|
|
|
|
|
|
|
|
/* Get the real (wall-) time in timespec format: */
|
|
|
|
#define ktime_get_real_ts(ts) getnstimeofday(ts)
|
|
|
|
|
2006-01-09 23:52:31 -05:00
|
|
|
#endif
|