kernel-aes67/include/linux/mmc/core.h

154 lines
5.0 KiB
C
Raw Normal View History

/*
* linux/include/linux/mmc/core.h
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef LINUX_MMC_CORE_H
#define LINUX_MMC_CORE_H
#include <linux/interrupt.h>
#include <linux/device.h>
struct request;
struct mmc_data;
struct mmc_request;
struct mmc_command {
u32 opcode;
u32 arg;
u32 resp[4];
unsigned int flags; /* expected response type */
#define MMC_RSP_PRESENT (1 << 0)
#define MMC_RSP_136 (1 << 1) /* 136 bit response */
#define MMC_RSP_CRC (1 << 2) /* expect valid crc */
#define MMC_RSP_BUSY (1 << 3) /* card may send busy */
#define MMC_RSP_OPCODE (1 << 4) /* response contains opcode */
#define MMC_CMD_MASK (3 << 5) /* non-SPI command type */
#define MMC_CMD_AC (0 << 5)
#define MMC_CMD_ADTC (1 << 5)
#define MMC_CMD_BC (2 << 5)
#define MMC_CMD_BCR (3 << 5)
#define MMC_RSP_SPI_S1 (1 << 7) /* one status byte */
#define MMC_RSP_SPI_S2 (1 << 8) /* second byte */
#define MMC_RSP_SPI_B4 (1 << 9) /* four data bytes */
#define MMC_RSP_SPI_BUSY (1 << 10) /* card may send busy */
/*
* These are the native response types, and correspond to valid bit
* patterns of the above flags. One additional valid pattern
* is all zeros, which means we don't expect a response.
*/
#define MMC_RSP_NONE (0)
#define MMC_RSP_R1 (MMC_RSP_PRESENT|MMC_RSP_CRC|MMC_RSP_OPCODE)
#define MMC_RSP_R1B (MMC_RSP_PRESENT|MMC_RSP_CRC|MMC_RSP_OPCODE|MMC_RSP_BUSY)
#define MMC_RSP_R2 (MMC_RSP_PRESENT|MMC_RSP_136|MMC_RSP_CRC)
#define MMC_RSP_R3 (MMC_RSP_PRESENT)
#define MMC_RSP_R4 (MMC_RSP_PRESENT)
#define MMC_RSP_R5 (MMC_RSP_PRESENT|MMC_RSP_CRC|MMC_RSP_OPCODE)
#define MMC_RSP_R6 (MMC_RSP_PRESENT|MMC_RSP_CRC|MMC_RSP_OPCODE)
#define MMC_RSP_R7 (MMC_RSP_PRESENT|MMC_RSP_CRC|MMC_RSP_OPCODE)
#define mmc_resp_type(cmd) ((cmd)->flags & (MMC_RSP_PRESENT|MMC_RSP_136|MMC_RSP_CRC|MMC_RSP_BUSY|MMC_RSP_OPCODE))
/*
* These are the SPI response types for MMC, SD, and SDIO cards.
* Commands return R1, with maybe more info. Zero is an error type;
* callers must always provide the appropriate MMC_RSP_SPI_Rx flags.
*/
#define MMC_RSP_SPI_R1 (MMC_RSP_SPI_S1)
#define MMC_RSP_SPI_R1B (MMC_RSP_SPI_S1|MMC_RSP_SPI_BUSY)
#define MMC_RSP_SPI_R2 (MMC_RSP_SPI_S1|MMC_RSP_SPI_S2)
#define MMC_RSP_SPI_R3 (MMC_RSP_SPI_S1|MMC_RSP_SPI_B4)
#define MMC_RSP_SPI_R4 (MMC_RSP_SPI_S1|MMC_RSP_SPI_B4)
#define MMC_RSP_SPI_R5 (MMC_RSP_SPI_S1|MMC_RSP_SPI_S2)
#define MMC_RSP_SPI_R7 (MMC_RSP_SPI_S1|MMC_RSP_SPI_B4)
#define mmc_spi_resp_type(cmd) ((cmd)->flags & \
(MMC_RSP_SPI_S1|MMC_RSP_SPI_BUSY|MMC_RSP_SPI_S2|MMC_RSP_SPI_B4))
/*
* These are the command types.
*/
#define mmc_cmd_type(cmd) ((cmd)->flags & MMC_CMD_MASK)
unsigned int retries; /* max number of retries */
unsigned int error; /* command error */
/*
* Standard errno values are used for errors, but some have specific
* meaning in the MMC layer:
*
* ETIMEDOUT Card took too long to respond
* EILSEQ Basic format problem with the received or sent data
* (e.g. CRC check failed, incorrect opcode in response
* or bad end bit)
* EINVAL Request cannot be performed because of restrictions
* in hardware and/or the driver
* ENOMEDIUM Host can determine that the slot is empty and is
* actively failing requests
*/
struct mmc_data *data; /* data segment associated with cmd */
struct mmc_request *mrq; /* associated request */
};
struct mmc_data {
unsigned int timeout_ns; /* data timeout (in ns, max 80ms) */
unsigned int timeout_clks; /* data timeout (in clocks) */
unsigned int blksz; /* data block size */
unsigned int blocks; /* number of blocks */
unsigned int error; /* data error */
unsigned int flags;
#define MMC_DATA_WRITE (1 << 8)
#define MMC_DATA_READ (1 << 9)
#define MMC_DATA_STREAM (1 << 10)
unsigned int bytes_xfered;
struct mmc_command *stop; /* stop command */
struct mmc_request *mrq; /* associated request */
unsigned int sg_len; /* size of scatter list */
struct scatterlist *sg; /* I/O scatter list */
};
struct mmc_request {
struct mmc_command *cmd;
struct mmc_data *data;
struct mmc_command *stop;
void *done_data; /* completion data */
void (*done)(struct mmc_request *);/* completion function */
};
struct mmc_host;
struct mmc_card;
extern void mmc_wait_for_req(struct mmc_host *, struct mmc_request *);
extern int mmc_wait_for_cmd(struct mmc_host *, struct mmc_command *, int);
extern int mmc_wait_for_app_cmd(struct mmc_host *, struct mmc_card *,
[PATCH] sd: initialize SD cards Support for the Secure Digital protocol in the MMC layer. A summary of the legal issues surrounding SD cards, as understood by yours truly: Members of the Secure Digital Association, hereafter SDA, are required to sign a NDA[1] before given access to any specifications. It has been speculated that including an SD implementation would forbid these members to redistribute Linux. This is the basic problem with SD support so it is unclear if it even is a problem since it has no effect on those of us that aren't members. The SDA doesn't seem to enforce these rules though since the patches included here are based on documentation made public by some of the members. The most complete specs[2] are actually released by Sandisk, one of the founding companies of the SDA. Because of this the NDA is considered a non-issue by most involved in the discussions concerning these patches. It might be that the SDA is only interested in protecting the so called "secure" bits of SD, which so far hasn't been found in any public spec. (The card is split into two sections, one "normal" and one "secure" which has an access scheme similar to TPM:s). (As a side note, Microsoft is working to make things easier for us since they want to be able to include the source code for a SD driver in one of their development kits. HP is making sure that the new NDA will allow a Linux implementation. So far only the SDIO specs have been opened up[3]. More will hopefully follow.) [1] http://www.sdcard.org/membership/images/ippolicy.pdf [2] http://www.sandisk.com/pdf/oem/ProdManualSDCardv1.9.pdf [3] http://www.sdcard.org/sdio/Simplified%20SDIO%20Card%20Specification.pdf This patch contains the central parts of the SD support. If no MMC cards are found on a bus then the MMC layer proceeds looking for SD cards. Helper functions are extended to handle the special needs of SD cards. Signed-off-by: Pierre Ossman <drzeus@drzeus.cx> Cc: Russell King <rmk@arm.linux.org.uk> Cc: David Brownell <david-b@pacbell.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 18:18:50 -04:00
struct mmc_command *, int);
extern void mmc_set_data_timeout(struct mmc_data *, const struct mmc_card *);
extern int __mmc_claim_host(struct mmc_host *host, atomic_t *abort);
extern void mmc_release_host(struct mmc_host *host);
/**
* mmc_claim_host - exclusively claim a host
* @host: mmc host to claim
*
* Claim a host for a set of operations.
*/
static inline void mmc_claim_host(struct mmc_host *host)
{
__mmc_claim_host(host, NULL);
}
#endif