kernel-aes67/include/linux/timer.h

102 lines
2.6 KiB
C
Raw Normal View History

#ifndef _LINUX_TIMER_H
#define _LINUX_TIMER_H
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/stddef.h>
struct tvec_t_base_s;
struct timer_list {
struct list_head entry;
unsigned long expires;
void (*function)(unsigned long);
unsigned long data;
struct tvec_t_base_s *base;
};
extern struct tvec_t_base_s boot_tvec_bases;
[PATCH] timers fixes/improvements This patch tries to solve following problems: 1. del_timer_sync() is racy. The timer can be fired again after del_timer_sync have checked all cpus and before it will recheck timer_pending(). 2. It has scalability problems. All cpus are scanned to determine if the timer is running on that cpu. With this patch del_timer_sync is O(1) and no slower than plain del_timer(pending_timer), unless it has to actually wait for completion of the currently running timer. The only restriction is that the recurring timer should not use add_timer_on(). 3. The timers are not serialized wrt to itself. If CPU_0 does mod_timer(jiffies+1) while the timer is currently running on CPU 1, it is quite possible that local interrupt on CPU_0 will start that timer before it finished on CPU_1. 4. The timers locking is suboptimal. __mod_timer() takes 3 locks at once and still requires wmb() in del_timer/run_timers. The new implementation takes 2 locks sequentially and does not need memory barriers. Currently ->base != NULL means that the timer is pending. In that case ->base.lock is used to lock the timer. __mod_timer also takes timer->lock because ->base can be == NULL. This patch uses timer->entry.next != NULL as indication that the timer is pending. So it does __list_del(), entry->next = NULL instead of list_del() when the timer is deleted. The ->base field is used for hashed locking only, it is initialized in init_timer() which sets ->base = per_cpu(tvec_bases). When the tvec_bases.lock is locked, it means that all timers which are tied to this base via timer->base are locked, and the base itself is locked too. So __run_timers/migrate_timers can safely modify all timers which could be found on ->tvX lists (pending timers). When the timer's base is locked, and the timer removed from ->entry list (which means that _run_timers/migrate_timers can't see this timer), it is possible to set timer->base = NULL and drop the lock: the timer remains locked. This patch adds lock_timer_base() helper, which waits for ->base != NULL, locks the ->base, and checks it is still the same. __mod_timer() schedules the timer on the local CPU and changes it's base. However, it does not lock both old and new bases at once. It locks the timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base, and adds this timer. This simplifies the code, because AB-BA deadlock is not possible. __mod_timer() also ensures that the timer's base is not changed while the timer's handler is running on the old base. __run_timers(), del_timer() do not change ->base anymore, they only clear pending flag. So del_timer_sync() can test timer->base->running_timer == timer to detect whether it is running or not. We don't need timer_list->lock anymore, this patch kills it. We also don't need barriers. del_timer() and __run_timers() used smp_wmb() before clearing timer's pending flag. It was needed because __mod_timer() did not lock old_base if the timer is not pending, so __mod_timer()->list_add() could race with del_timer()->list_del(). With this patch these functions are serialized through base->lock. One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch adds global struct timer_base_s { spinlock_t lock; struct timer_list *running_timer; } __init_timer_base; which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s struct are replaced by struct timer_base_s t_base. It is indeed ugly. But this can't have scalability problems. The global __init_timer_base.lock is used only when __mod_timer() is called for the first time AND the timer was compile time initialized. After that the timer migrates to the local CPU. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:08:56 -04:00
#define TIMER_INITIALIZER(_function, _expires, _data) { \
.function = (_function), \
.expires = (_expires), \
.data = (_data), \
.base = &boot_tvec_bases, \
}
#define DEFINE_TIMER(_name, _function, _expires, _data) \
struct timer_list _name = \
TIMER_INITIALIZER(_function, _expires, _data)
[PATCH] timers fixes/improvements This patch tries to solve following problems: 1. del_timer_sync() is racy. The timer can be fired again after del_timer_sync have checked all cpus and before it will recheck timer_pending(). 2. It has scalability problems. All cpus are scanned to determine if the timer is running on that cpu. With this patch del_timer_sync is O(1) and no slower than plain del_timer(pending_timer), unless it has to actually wait for completion of the currently running timer. The only restriction is that the recurring timer should not use add_timer_on(). 3. The timers are not serialized wrt to itself. If CPU_0 does mod_timer(jiffies+1) while the timer is currently running on CPU 1, it is quite possible that local interrupt on CPU_0 will start that timer before it finished on CPU_1. 4. The timers locking is suboptimal. __mod_timer() takes 3 locks at once and still requires wmb() in del_timer/run_timers. The new implementation takes 2 locks sequentially and does not need memory barriers. Currently ->base != NULL means that the timer is pending. In that case ->base.lock is used to lock the timer. __mod_timer also takes timer->lock because ->base can be == NULL. This patch uses timer->entry.next != NULL as indication that the timer is pending. So it does __list_del(), entry->next = NULL instead of list_del() when the timer is deleted. The ->base field is used for hashed locking only, it is initialized in init_timer() which sets ->base = per_cpu(tvec_bases). When the tvec_bases.lock is locked, it means that all timers which are tied to this base via timer->base are locked, and the base itself is locked too. So __run_timers/migrate_timers can safely modify all timers which could be found on ->tvX lists (pending timers). When the timer's base is locked, and the timer removed from ->entry list (which means that _run_timers/migrate_timers can't see this timer), it is possible to set timer->base = NULL and drop the lock: the timer remains locked. This patch adds lock_timer_base() helper, which waits for ->base != NULL, locks the ->base, and checks it is still the same. __mod_timer() schedules the timer on the local CPU and changes it's base. However, it does not lock both old and new bases at once. It locks the timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base, and adds this timer. This simplifies the code, because AB-BA deadlock is not possible. __mod_timer() also ensures that the timer's base is not changed while the timer's handler is running on the old base. __run_timers(), del_timer() do not change ->base anymore, they only clear pending flag. So del_timer_sync() can test timer->base->running_timer == timer to detect whether it is running or not. We don't need timer_list->lock anymore, this patch kills it. We also don't need barriers. del_timer() and __run_timers() used smp_wmb() before clearing timer's pending flag. It was needed because __mod_timer() did not lock old_base if the timer is not pending, so __mod_timer()->list_add() could race with del_timer()->list_del(). With this patch these functions are serialized through base->lock. One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch adds global struct timer_base_s { spinlock_t lock; struct timer_list *running_timer; } __init_timer_base; which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s struct are replaced by struct timer_base_s t_base. It is indeed ugly. But this can't have scalability problems. The global __init_timer_base.lock is used only when __mod_timer() is called for the first time AND the timer was compile time initialized. After that the timer migrates to the local CPU. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:08:56 -04:00
void fastcall init_timer(struct timer_list * timer);
static inline void setup_timer(struct timer_list * timer,
void (*function)(unsigned long),
unsigned long data)
{
timer->function = function;
timer->data = data;
init_timer(timer);
}
/***
* timer_pending - is a timer pending?
* @timer: the timer in question
*
* timer_pending will tell whether a given timer is currently pending,
* or not. Callers must ensure serialization wrt. other operations done
* to this timer, eg. interrupt contexts, or other CPUs on SMP.
*
* return value: 1 if the timer is pending, 0 if not.
*/
static inline int timer_pending(const struct timer_list * timer)
{
[PATCH] timers fixes/improvements This patch tries to solve following problems: 1. del_timer_sync() is racy. The timer can be fired again after del_timer_sync have checked all cpus and before it will recheck timer_pending(). 2. It has scalability problems. All cpus are scanned to determine if the timer is running on that cpu. With this patch del_timer_sync is O(1) and no slower than plain del_timer(pending_timer), unless it has to actually wait for completion of the currently running timer. The only restriction is that the recurring timer should not use add_timer_on(). 3. The timers are not serialized wrt to itself. If CPU_0 does mod_timer(jiffies+1) while the timer is currently running on CPU 1, it is quite possible that local interrupt on CPU_0 will start that timer before it finished on CPU_1. 4. The timers locking is suboptimal. __mod_timer() takes 3 locks at once and still requires wmb() in del_timer/run_timers. The new implementation takes 2 locks sequentially and does not need memory barriers. Currently ->base != NULL means that the timer is pending. In that case ->base.lock is used to lock the timer. __mod_timer also takes timer->lock because ->base can be == NULL. This patch uses timer->entry.next != NULL as indication that the timer is pending. So it does __list_del(), entry->next = NULL instead of list_del() when the timer is deleted. The ->base field is used for hashed locking only, it is initialized in init_timer() which sets ->base = per_cpu(tvec_bases). When the tvec_bases.lock is locked, it means that all timers which are tied to this base via timer->base are locked, and the base itself is locked too. So __run_timers/migrate_timers can safely modify all timers which could be found on ->tvX lists (pending timers). When the timer's base is locked, and the timer removed from ->entry list (which means that _run_timers/migrate_timers can't see this timer), it is possible to set timer->base = NULL and drop the lock: the timer remains locked. This patch adds lock_timer_base() helper, which waits for ->base != NULL, locks the ->base, and checks it is still the same. __mod_timer() schedules the timer on the local CPU and changes it's base. However, it does not lock both old and new bases at once. It locks the timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base, and adds this timer. This simplifies the code, because AB-BA deadlock is not possible. __mod_timer() also ensures that the timer's base is not changed while the timer's handler is running on the old base. __run_timers(), del_timer() do not change ->base anymore, they only clear pending flag. So del_timer_sync() can test timer->base->running_timer == timer to detect whether it is running or not. We don't need timer_list->lock anymore, this patch kills it. We also don't need barriers. del_timer() and __run_timers() used smp_wmb() before clearing timer's pending flag. It was needed because __mod_timer() did not lock old_base if the timer is not pending, so __mod_timer()->list_add() could race with del_timer()->list_del(). With this patch these functions are serialized through base->lock. One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch adds global struct timer_base_s { spinlock_t lock; struct timer_list *running_timer; } __init_timer_base; which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s struct are replaced by struct timer_base_s t_base. It is indeed ugly. But this can't have scalability problems. The global __init_timer_base.lock is used only when __mod_timer() is called for the first time AND the timer was compile time initialized. After that the timer migrates to the local CPU. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:08:56 -04:00
return timer->entry.next != NULL;
}
extern void add_timer_on(struct timer_list *timer, int cpu);
extern int del_timer(struct timer_list * timer);
extern int __mod_timer(struct timer_list *timer, unsigned long expires);
extern int mod_timer(struct timer_list *timer, unsigned long expires);
extern unsigned long next_timer_interrupt(void);
/***
* add_timer - start a timer
* @timer: the timer to be added
*
* The kernel will do a ->function(->data) callback from the
* timer interrupt at the ->expires point in the future. The
* current time is 'jiffies'.
*
* The timer's ->expires, ->function (and if the handler uses it, ->data)
* fields must be set prior calling this function.
*
* Timers with an ->expires field in the past will be executed in the next
* timer tick.
*/
static inline void add_timer(struct timer_list *timer)
{
BUG_ON(timer_pending(timer));
__mod_timer(timer, timer->expires);
}
#ifdef CONFIG_SMP
extern int try_to_del_timer_sync(struct timer_list *timer);
extern int del_timer_sync(struct timer_list *timer);
#else
# define try_to_del_timer_sync(t) del_timer(t)
# define del_timer_sync(t) del_timer(t)
#endif
[PATCH] timers fixes/improvements This patch tries to solve following problems: 1. del_timer_sync() is racy. The timer can be fired again after del_timer_sync have checked all cpus and before it will recheck timer_pending(). 2. It has scalability problems. All cpus are scanned to determine if the timer is running on that cpu. With this patch del_timer_sync is O(1) and no slower than plain del_timer(pending_timer), unless it has to actually wait for completion of the currently running timer. The only restriction is that the recurring timer should not use add_timer_on(). 3. The timers are not serialized wrt to itself. If CPU_0 does mod_timer(jiffies+1) while the timer is currently running on CPU 1, it is quite possible that local interrupt on CPU_0 will start that timer before it finished on CPU_1. 4. The timers locking is suboptimal. __mod_timer() takes 3 locks at once and still requires wmb() in del_timer/run_timers. The new implementation takes 2 locks sequentially and does not need memory barriers. Currently ->base != NULL means that the timer is pending. In that case ->base.lock is used to lock the timer. __mod_timer also takes timer->lock because ->base can be == NULL. This patch uses timer->entry.next != NULL as indication that the timer is pending. So it does __list_del(), entry->next = NULL instead of list_del() when the timer is deleted. The ->base field is used for hashed locking only, it is initialized in init_timer() which sets ->base = per_cpu(tvec_bases). When the tvec_bases.lock is locked, it means that all timers which are tied to this base via timer->base are locked, and the base itself is locked too. So __run_timers/migrate_timers can safely modify all timers which could be found on ->tvX lists (pending timers). When the timer's base is locked, and the timer removed from ->entry list (which means that _run_timers/migrate_timers can't see this timer), it is possible to set timer->base = NULL and drop the lock: the timer remains locked. This patch adds lock_timer_base() helper, which waits for ->base != NULL, locks the ->base, and checks it is still the same. __mod_timer() schedules the timer on the local CPU and changes it's base. However, it does not lock both old and new bases at once. It locks the timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base, and adds this timer. This simplifies the code, because AB-BA deadlock is not possible. __mod_timer() also ensures that the timer's base is not changed while the timer's handler is running on the old base. __run_timers(), del_timer() do not change ->base anymore, they only clear pending flag. So del_timer_sync() can test timer->base->running_timer == timer to detect whether it is running or not. We don't need timer_list->lock anymore, this patch kills it. We also don't need barriers. del_timer() and __run_timers() used smp_wmb() before clearing timer's pending flag. It was needed because __mod_timer() did not lock old_base if the timer is not pending, so __mod_timer()->list_add() could race with del_timer()->list_del(). With this patch these functions are serialized through base->lock. One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch adds global struct timer_base_s { spinlock_t lock; struct timer_list *running_timer; } __init_timer_base; which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s struct are replaced by struct timer_base_s t_base. It is indeed ugly. But this can't have scalability problems. The global __init_timer_base.lock is used only when __mod_timer() is called for the first time AND the timer was compile time initialized. After that the timer migrates to the local CPU. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:08:56 -04:00
#define del_singleshot_timer_sync(t) del_timer_sync(t)
extern void init_timers(void);
extern void run_local_timers(void);
struct hrtimer;
extern int it_real_fn(struct hrtimer *);
#endif