kernel-aes67/lib/random32.c

155 lines
3.8 KiB
C
Raw Normal View History

/*
This is a maximally equidistributed combined Tausworthe generator
based on code from GNU Scientific Library 1.5 (30 Jun 2004)
x_n = (s1_n ^ s2_n ^ s3_n)
s1_{n+1} = (((s1_n & 4294967294) <<12) ^ (((s1_n <<13) ^ s1_n) >>19))
s2_{n+1} = (((s2_n & 4294967288) << 4) ^ (((s2_n << 2) ^ s2_n) >>25))
s3_{n+1} = (((s3_n & 4294967280) <<17) ^ (((s3_n << 3) ^ s3_n) >>11))
The period of this generator is about 2^88.
From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
Generators", Mathematics of Computation, 65, 213 (1996), 203--213.
This is available on the net from L'Ecuyer's home page,
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
There is an erratum in the paper "Tables of Maximally
Equidistributed Combined LFSR Generators", Mathematics of
Computation, 68, 225 (1999), 261--269:
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
... the k_j most significant bits of z_j must be non-
zero, for each j. (Note: this restriction also applies to the
computer code given in [4], but was mistakenly not mentioned in
that paper.)
This affects the seeding procedure by imposing the requirement
s1 > 1, s2 > 7, s3 > 15.
*/
#include <linux/types.h>
#include <linux/percpu.h>
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/random.h>
struct rnd_state {
u32 s1, s2, s3;
};
static DEFINE_PER_CPU(struct rnd_state, net_rand_state);
static u32 __random32(struct rnd_state *state)
{
#define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b)
state->s1 = TAUSWORTHE(state->s1, 13, 19, 4294967294UL, 12);
state->s2 = TAUSWORTHE(state->s2, 2, 25, 4294967288UL, 4);
state->s3 = TAUSWORTHE(state->s3, 3, 11, 4294967280UL, 17);
return (state->s1 ^ state->s2 ^ state->s3);
}
/*
* Handle minimum values for seeds
*/
static inline u32 __seed(u32 x, u32 m)
{
return (x < m) ? x + m : x;
}
/**
* random32 - pseudo random number generator
*
* A 32 bit pseudo-random number is generated using a fast
* algorithm suitable for simulation. This algorithm is NOT
* considered safe for cryptographic use.
*/
u32 random32(void)
{
unsigned long r;
struct rnd_state *state = &get_cpu_var(net_rand_state);
r = __random32(state);
put_cpu_var(state);
return r;
}
EXPORT_SYMBOL(random32);
/**
* srandom32 - add entropy to pseudo random number generator
* @seed: seed value
*
* Add some additional seeding to the random32() pool.
*/
void srandom32(u32 entropy)
{
int i;
/*
* No locking on the CPUs, but then somewhat random results are, well,
* expected.
*/
for_each_possible_cpu (i) {
struct rnd_state *state = &per_cpu(net_rand_state, i);
state->s1 = __seed(state->s1 ^ entropy, 1);
}
}
EXPORT_SYMBOL(srandom32);
/*
* Generate some initially weak seeding values to allow
* to start the random32() engine.
*/
static int __init random32_init(void)
{
int i;
for_each_possible_cpu(i) {
struct rnd_state *state = &per_cpu(net_rand_state,i);
#define LCG(x) ((x) * 69069) /* super-duper LCG */
state->s1 = __seed(LCG(i + jiffies), 1);
state->s2 = __seed(LCG(state->s1), 7);
state->s3 = __seed(LCG(state->s2), 15);
/* "warm it up" */
__random32(state);
__random32(state);
__random32(state);
__random32(state);
__random32(state);
__random32(state);
}
return 0;
}
core_initcall(random32_init);
/*
* Generate better values after random number generator
* is fully initalized.
*/
static int __init random32_reseed(void)
{
int i;
for_each_possible_cpu(i) {
struct rnd_state *state = &per_cpu(net_rand_state,i);
u32 seeds[3];
get_random_bytes(&seeds, sizeof(seeds));
state->s1 = __seed(seeds[0], 1);
state->s2 = __seed(seeds[1], 7);
state->s3 = __seed(seeds[2], 15);
/* mix it in */
__random32(state);
}
return 0;
}
late_initcall(random32_reseed);