kernel-aes67/drivers/net/arm/ether00.c

1018 lines
26 KiB
C
Raw Normal View History

/*
* drivers/net/ether00.c
*
* Copyright (C) 2001 Altera Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* includes */
#include <linux/config.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/module.h>
#include <linux/tqueue.h>
#include <linux/mtd/mtd.h>
#include <linux/pld/pld_hotswap.h>
#include <asm/arch/excalibur.h>
#include <asm/arch/hardware.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/sizes.h>
#include <asm/arch/ether00.h>
#include <asm/arch/tdkphy.h>
MODULE_AUTHOR("Clive Davies");
MODULE_DESCRIPTION("Altera Ether00 IP core driver");
MODULE_LICENSE("GPL");
#define PKT_BUF_SZ 1540 /* Size of each rx buffer */
#define ETH_NR 4 /* Number of MACs this driver supports */
#define DEBUG(x)
#define __dma_va(x) (unsigned int)((unsigned int)priv->dma_data+(((unsigned int)(x))&(EXC_SPSRAM_BLOCK0_SIZE-1)))
#define __dma_pa(x) (unsigned int)(EXC_SPSRAM_BLOCK0_BASE+(((unsigned int)(x))-(unsigned int)priv->dma_data))
#define ETHER00_BASE 0
#define ETHER00_TYPE
#define ETHER00_NAME "ether00"
#define MAC_REG_SIZE 0x400 /* size of MAC register area */
/* typedefs */
/* The definition of the driver control structure */
#define RX_NUM_BUFF 10
#define RX_NUM_FDESC 10
#define TX_NUM_FDESC 10
struct tx_fda_ent{
FDA_DESC fd;
BUF_DESC bd;
BUF_DESC pad;
};
struct rx_fda_ent{
FDA_DESC fd;
BUF_DESC bd;
BUF_DESC pad;
};
struct rx_blist_ent{
FDA_DESC fd;
BUF_DESC bd;
BUF_DESC pad;
};
struct net_priv
{
struct net_device_stats stats;
struct sk_buff* skb;
void* dma_data;
struct rx_blist_ent* rx_blist_vp;
struct rx_fda_ent* rx_fda_ptr;
struct tx_fda_ent* tx_fdalist_vp;
struct tq_struct tq_memupdate;
unsigned char memupdate_scheduled;
unsigned char rx_disabled;
unsigned char queue_stopped;
spinlock_t rx_lock;
};
static const char vendor_id[2]={0x07,0xed};
#ifdef ETHER00_DEBUG
/* Dump (most) registers for debugging puposes */
static void dump_regs(struct net_device *dev){
struct net_priv* priv=dev->priv;
unsigned int* i;
printk("\n RX free descriptor area:\n");
for(i=(unsigned int*)priv->rx_fda_ptr;
i<((unsigned int*)(priv->rx_fda_ptr+RX_NUM_FDESC));){
printk("%#8x %#8x %#8x %#8x\n",*i,*(i+1),*(i+2),*(i+3));
i+=4;
}
printk("\n RX buffer list:\n");
for(i=(unsigned int*)priv->rx_blist_vp;
i<((unsigned int*)(priv->rx_blist_vp+RX_NUM_BUFF));){
printk("%#8x %#8x %#8x %#8x\n",*i,*(i+1),*(i+2),*(i+3));
i+=4;
}
printk("\n TX frame descriptor list:\n");
for(i=(unsigned int*)priv->tx_fdalist_vp;
i<((unsigned int*)(priv->tx_fdalist_vp+TX_NUM_FDESC));){
printk("%#8x %#8x %#8x %#8x\n",*i,*(i+1),*(i+2),*(i+3));
i+=4;
}
printk("\ndma ctl=%#x\n",readw(ETHER_DMA_CTL(dev->base_addr)));
printk("txfrmptr=%#x\n",readw(ETHER_TXFRMPTR(dev->base_addr)));
printk("txthrsh=%#x\n",readw(ETHER_TXTHRSH(dev->base_addr)));
printk("txpollctr=%#x\n",readw(ETHER_TXPOLLCTR(dev->base_addr)));
printk("blfrmptr=%#x\n",readw(ETHER_BLFRMPTR(dev->base_addr)));
printk("rxfragsize=%#x\n",readw(ETHER_RXFRAGSIZE(dev->base_addr)));
printk("tx_int_en=%#x\n",readw(ETHER_INT_EN(dev->base_addr)));
printk("fda_bas=%#x\n",readw(ETHER_FDA_BAS(dev->base_addr)));
printk("fda_lim=%#x\n",readw(ETHER_FDA_LIM(dev->base_addr)));
printk("int_src=%#x\n",readw(ETHER_INT_SRC(dev->base_addr)));
printk("pausecnt=%#x\n",readw(ETHER_PAUSECNT(dev->base_addr)));
printk("rempaucnt=%#x\n",readw(ETHER_REMPAUCNT(dev->base_addr)));
printk("txconfrmstat=%#x\n",readw(ETHER_TXCONFRMSTAT(dev->base_addr)));
printk("mac_ctl=%#x\n",readw(ETHER_MAC_CTL(dev->base_addr)));
printk("arc_ctl=%#x\n",readw(ETHER_ARC_CTL(dev->base_addr)));
printk("tx_ctl=%#x\n",readw(ETHER_TX_CTL(dev->base_addr)));
}
#endif /* ETHER00_DEBUG */
static int ether00_write_phy(struct net_device *dev, short address, short value)
{
volatile int count = 1024;
writew(value,ETHER_MD_DATA(dev->base_addr));
writew( ETHER_MD_CA_BUSY_MSK |
ETHER_MD_CA_WR_MSK |
(address & ETHER_MD_CA_ADDR_MSK),
ETHER_MD_CA(dev->base_addr));
/* Wait for the command to complete */
while((readw(ETHER_MD_CA(dev->base_addr)) & ETHER_MD_CA_BUSY_MSK)&&count){
count--;
}
if (!count){
printk("Write to phy failed, addr=%#x, data=%#x\n",address, value);
return -EIO;
}
return 0;
}
static int ether00_read_phy(struct net_device *dev, short address)
{
volatile int count = 1024;
writew( ETHER_MD_CA_BUSY_MSK |
(address & ETHER_MD_CA_ADDR_MSK),
ETHER_MD_CA(dev->base_addr));
/* Wait for the command to complete */
while((readw(ETHER_MD_CA(dev->base_addr)) & ETHER_MD_CA_BUSY_MSK)&&count){
count--;
}
if (!count){
printk(KERN_WARNING "Read from phy timed out\n");
return -EIO;
}
return readw(ETHER_MD_DATA(dev->base_addr));
}
static void ether00_phy_int(int irq_num, void* dev_id, struct pt_regs* regs)
{
struct net_device* dev=dev_id;
int irq_status;
irq_status=ether00_read_phy(dev, PHY_IRQ_CONTROL);
if(irq_status & PHY_IRQ_CONTROL_ANEG_COMP_INT_MSK){
/*
* Autonegotiation complete on epxa10db. The mac doesn't
* twig if we're in full duplex so we need to check the
* phy status register and configure the mac accordingly
*/
if(ether00_read_phy(dev, PHY_STATUS)&(PHY_STATUS_10T_F_MSK|PHY_STATUS_100_X_F_MSK)){
int tmp;
tmp=readl(ETHER_MAC_CTL(dev->base_addr));
writel(tmp|ETHER_MAC_CTL_FULLDUP_MSK,ETHER_MAC_CTL(dev->base_addr));
}
}
if(irq_status&PHY_IRQ_CONTROL_LS_CHG_INT_MSK){
if(ether00_read_phy(dev, PHY_STATUS)& PHY_STATUS_LINK_MSK){
/* Link is up */
netif_carrier_on(dev);
//printk("Carrier on\n");
}else{
netif_carrier_off(dev);
//printk("Carrier off\n");
}
}
}
static void setup_blist_entry(struct sk_buff* skb,struct rx_blist_ent* blist_ent_ptr){
/* Make the buffer consistent with the cache as the mac is going to write
* directly into it*/
blist_ent_ptr->fd.FDSystem=(unsigned int)skb;
blist_ent_ptr->bd.BuffData=(char*)__pa(skb->data);
consistent_sync(skb->data,PKT_BUF_SZ,PCI_DMA_FROMDEVICE);
/* align IP on 16 Byte (DMA_CTL set to skip 2 bytes) */
skb_reserve(skb,2);
blist_ent_ptr->bd.BuffLength=PKT_BUF_SZ-2;
blist_ent_ptr->fd.FDLength=1;
blist_ent_ptr->fd.FDCtl=FDCTL_COWNSFD_MSK;
blist_ent_ptr->bd.BDCtl=BDCTL_COWNSBD_MSK;
}
static int ether00_mem_init(struct net_device* dev)
{
struct net_priv* priv=dev->priv;
struct tx_fda_ent *tx_fd_ptr,*tx_end_ptr;
struct rx_blist_ent* blist_ent_ptr;
int i;
/*
* Grab a block of on chip SRAM to contain the control stuctures for
* the ethernet MAC. This uncached becuase it needs to be accesses by both
* bus masters (cpu + mac). However, it shouldn't matter too much in terms
* of speed as its on chip memory
*/
priv->dma_data=ioremap_nocache(EXC_SPSRAM_BLOCK0_BASE,EXC_SPSRAM_BLOCK0_SIZE );
if (!priv->dma_data)
return -ENOMEM;
priv->rx_fda_ptr=(struct rx_fda_ent*)priv->dma_data;
/*
* Now share it out amongst the Frame descriptors and the buffer list
*/
priv->rx_blist_vp=(struct rx_blist_ent*)((unsigned int)priv->dma_data+RX_NUM_FDESC*sizeof(struct rx_fda_ent));
/*
*Initalise the FDA list
*/
/* set ownership to the controller */
memset(priv->rx_fda_ptr,0x80,RX_NUM_FDESC*sizeof(struct rx_fda_ent));
/*
*Initialise the buffer list
*/
blist_ent_ptr=priv->rx_blist_vp;
i=0;
while(blist_ent_ptr<(priv->rx_blist_vp+RX_NUM_BUFF)){
struct sk_buff *skb;
blist_ent_ptr->fd.FDLength=1;
skb=dev_alloc_skb(PKT_BUF_SZ);
if(skb){
setup_blist_entry(skb,blist_ent_ptr);
blist_ent_ptr->fd.FDNext=(FDA_DESC*)__dma_pa(blist_ent_ptr+1);
blist_ent_ptr->bd.BDStat=i++;
blist_ent_ptr++;
}
else
{
printk("Failed to initalise buffer list\n");
}
}
blist_ent_ptr--;
blist_ent_ptr->fd.FDNext=(FDA_DESC*)__dma_pa(priv->rx_blist_vp);
priv->tx_fdalist_vp=(struct tx_fda_ent*)(priv->rx_blist_vp+RX_NUM_BUFF);
/* Initialise the buffers to be a circular list. The mac will then go poll
* the list until it finds a frame ready to transmit */
tx_end_ptr=priv->tx_fdalist_vp+TX_NUM_FDESC;
for(tx_fd_ptr=priv->tx_fdalist_vp;tx_fd_ptr<tx_end_ptr;tx_fd_ptr++){
tx_fd_ptr->fd.FDNext=(FDA_DESC*)__dma_pa((tx_fd_ptr+1));
tx_fd_ptr->fd.FDCtl=1;
tx_fd_ptr->fd.FDStat=0;
tx_fd_ptr->fd.FDLength=1;
}
/* Change the last FDNext pointer to make a circular list */
tx_fd_ptr--;
tx_fd_ptr->fd.FDNext=(FDA_DESC*)__dma_pa(priv->tx_fdalist_vp);
/* Point the device at the chain of Rx and Tx Buffers */
writel((unsigned int)__dma_pa(priv->rx_fda_ptr),ETHER_FDA_BAS(dev->base_addr));
writel((RX_NUM_FDESC-1)*sizeof(struct rx_fda_ent),ETHER_FDA_LIM(dev->base_addr));
writel((unsigned int)__dma_pa(priv->rx_blist_vp),ETHER_BLFRMPTR(dev->base_addr));
writel((unsigned int)__dma_pa(priv->tx_fdalist_vp),ETHER_TXFRMPTR(dev->base_addr));
return 0;
}
void ether00_mem_update(void* dev_id)
{
struct net_device* dev=dev_id;
struct net_priv* priv=dev->priv;
struct sk_buff* skb;
struct tx_fda_ent *fda_ptr=priv->tx_fdalist_vp;
struct rx_blist_ent* blist_ent_ptr;
unsigned long flags;
priv->tq_memupdate.sync=0;
//priv->tq_memupdate.list=
priv->memupdate_scheduled=0;
/* Transmit interrupt */
while(fda_ptr<(priv->tx_fdalist_vp+TX_NUM_FDESC)){
if(!(FDCTL_COWNSFD_MSK&fda_ptr->fd.FDCtl) && (ETHER_TX_STAT_COMP_MSK&fda_ptr->fd.FDStat)){
priv->stats.tx_packets++;
priv->stats.tx_bytes+=fda_ptr->bd.BuffLength;
skb=(struct sk_buff*)fda_ptr->fd.FDSystem;
//printk("%d:txcln:fda=%#x skb=%#x\n",jiffies,fda_ptr,skb);
dev_kfree_skb(skb);
fda_ptr->fd.FDSystem=0;
fda_ptr->fd.FDStat=0;
fda_ptr->fd.FDCtl=0;
}
fda_ptr++;
}
/* Fill in any missing buffers from the received queue */
spin_lock_irqsave(&priv->rx_lock,flags);
blist_ent_ptr=priv->rx_blist_vp;
while(blist_ent_ptr<(priv->rx_blist_vp+RX_NUM_BUFF)){
/* fd.FDSystem of 0 indicates we failed to allocate the buffer in the ISR */
if(!blist_ent_ptr->fd.FDSystem){
struct sk_buff *skb;
skb=dev_alloc_skb(PKT_BUF_SZ);
blist_ent_ptr->fd.FDSystem=(unsigned int)skb;
if(skb){
setup_blist_entry(skb,blist_ent_ptr);
}
else
{
break;
}
}
blist_ent_ptr++;
}
spin_unlock_irqrestore(&priv->rx_lock,flags);
if(priv->queue_stopped){
//printk("%d:cln:start q\n",jiffies);
netif_start_queue(dev);
}
if(priv->rx_disabled){
//printk("%d:enable_irq\n",jiffies);
priv->rx_disabled=0;
writel(ETHER_RX_CTL_RXEN_MSK,ETHER_RX_CTL(dev->base_addr));
}
}
static void ether00_int( int irq_num, void* dev_id, struct pt_regs* regs)
{
struct net_device* dev=dev_id;
struct net_priv* priv=dev->priv;
unsigned int interruptValue;
interruptValue=readl(ETHER_INT_SRC(dev->base_addr));
//printk("INT_SRC=%x\n",interruptValue);
if(!(readl(ETHER_INT_SRC(dev->base_addr)) & ETHER_INT_SRC_IRQ_MSK))
{
return; /* Interrupt wasn't caused by us!! */
}
if(readl(ETHER_INT_SRC(dev->base_addr))&
(ETHER_INT_SRC_INTMACRX_MSK |
ETHER_INT_SRC_FDAEX_MSK |
ETHER_INT_SRC_BLEX_MSK)) {
struct rx_blist_ent* blist_ent_ptr;
struct rx_fda_ent* fda_ent_ptr;
struct sk_buff* skb;
fda_ent_ptr=priv->rx_fda_ptr;
spin_lock(&priv->rx_lock);
while(fda_ent_ptr<(priv->rx_fda_ptr+RX_NUM_FDESC)){
int result;
if(!(fda_ent_ptr->fd.FDCtl&FDCTL_COWNSFD_MSK))
{
/* This frame is ready for processing */
/*find the corresponding buffer in the bufferlist */
blist_ent_ptr=priv->rx_blist_vp+fda_ent_ptr->bd.BDStat;
skb=(struct sk_buff*)blist_ent_ptr->fd.FDSystem;
/* Pass this skb up the stack */
skb->dev=dev;
skb_put(skb,fda_ent_ptr->fd.FDLength);
skb->protocol=eth_type_trans(skb,dev);
skb->ip_summed=CHECKSUM_UNNECESSARY;
result=netif_rx(skb);
/* Update statistics */
priv->stats.rx_packets++;
priv->stats.rx_bytes+=fda_ent_ptr->fd.FDLength;
/* Free the FDA entry */
fda_ent_ptr->bd.BDStat=0xff;
fda_ent_ptr->fd.FDCtl=FDCTL_COWNSFD_MSK;
/* Allocate a new skb and point the bd entry to it */
blist_ent_ptr->fd.FDSystem=0;
skb=dev_alloc_skb(PKT_BUF_SZ);
//printk("allocskb=%#x\n",skb);
if(skb){
setup_blist_entry(skb,blist_ent_ptr);
}
else if(!priv->memupdate_scheduled){
int tmp;
/* There are no buffers at the moment, so schedule */
/* the background task to sort this out */
schedule_task(&priv->tq_memupdate);
priv->memupdate_scheduled=1;
printk(KERN_DEBUG "%s:No buffers",dev->name);
/* If this interrupt was due to a lack of buffers then
* we'd better stop the receiver too */
if(interruptValue&ETHER_INT_SRC_BLEX_MSK){
priv->rx_disabled=1;
tmp=readl(ETHER_INT_SRC(dev->base_addr));
writel(tmp&~ETHER_RX_CTL_RXEN_MSK,ETHER_RX_CTL(dev->base_addr));
printk(KERN_DEBUG "%s:Halting rx",dev->name);
}
}
}
fda_ent_ptr++;
}
spin_unlock(&priv->rx_lock);
/* Clear the interrupts */
writel(ETHER_INT_SRC_INTMACRX_MSK | ETHER_INT_SRC_FDAEX_MSK
| ETHER_INT_SRC_BLEX_MSK,ETHER_INT_SRC(dev->base_addr));
}
if(readl(ETHER_INT_SRC(dev->base_addr))&ETHER_INT_SRC_INTMACTX_MSK){
if(!priv->memupdate_scheduled){
schedule_task(&priv->tq_memupdate);
priv->memupdate_scheduled=1;
}
/* Clear the interrupt */
writel(ETHER_INT_SRC_INTMACTX_MSK,ETHER_INT_SRC(dev->base_addr));
}
if (readl(ETHER_INT_SRC(dev->base_addr)) & (ETHER_INT_SRC_SWINT_MSK|
ETHER_INT_SRC_INTEARNOT_MSK|
ETHER_INT_SRC_INTLINK_MSK|
ETHER_INT_SRC_INTEXBD_MSK|
ETHER_INT_SRC_INTTXCTLCMP_MSK))
{
/*
* Not using any of these so they shouldn't happen
*
* In the cased of INTEXBD - if you allocate more
* than 28 decsriptors you may need to think about this
*/
printk("Not using this interrupt\n");
}
if (readl(ETHER_INT_SRC(dev->base_addr)) &
(ETHER_INT_SRC_INTSBUS_MSK |
ETHER_INT_SRC_INTNRABT_MSK
|ETHER_INT_SRC_DMPARERR_MSK))
{
/*
* Hardware errors, we can either ignore them and hope they go away
*or reset the device, I'll try the first for now to see if they happen
*/
printk("Hardware error\n");
}
}
static void ether00_setup_ethernet_address(struct net_device* dev)
{
int tmp;
dev->addr_len=6;
writew(0,ETHER_ARC_ADR(dev->base_addr));
writel((dev->dev_addr[0]<<24) |
(dev->dev_addr[1]<<16) |
(dev->dev_addr[2]<<8) |
dev->dev_addr[3],
ETHER_ARC_DATA(dev->base_addr));
writew(4,ETHER_ARC_ADR(dev->base_addr));
tmp=readl(ETHER_ARC_DATA(dev->base_addr));
tmp&=0xffff;
tmp|=(dev->dev_addr[4]<<24) | (dev->dev_addr[5]<<16);
writel(tmp, ETHER_ARC_DATA(dev->base_addr));
/* Enable this entry in the ARC */
writel(1,ETHER_ARC_ENA(dev->base_addr));
return;
}
static void ether00_reset(struct net_device *dev)
{
/* reset the controller */
writew(ETHER_MAC_CTL_RESET_MSK,ETHER_MAC_CTL(dev->base_addr));
/*
* Make sure we're not going to send anything
*/
writew(ETHER_TX_CTL_TXHALT_MSK,ETHER_TX_CTL(dev->base_addr));
/*
* Make sure we're not going to receive anything
*/
writew(ETHER_RX_CTL_RXHALT_MSK,ETHER_RX_CTL(dev->base_addr));
/*
* Disable Interrupts for now, and set the burst size to 8 bytes
*/
writel(ETHER_DMA_CTL_INTMASK_MSK |
((8 << ETHER_DMA_CTL_DMBURST_OFST) & ETHER_DMA_CTL_DMBURST_MSK)
|(2<<ETHER_DMA_CTL_RXALIGN_OFST),
ETHER_DMA_CTL(dev->base_addr));
/*
* Set TxThrsh - start transmitting a packet after 1514
* bytes or when a packet is complete, whichever comes first
*/
writew(1514,ETHER_TXTHRSH(dev->base_addr));
/*
* Set TxPollCtr. Each cycle is
* 61.44 microseconds with a 33 MHz bus
*/
writew(1,ETHER_TXPOLLCTR(dev->base_addr));
/*
* Set Rx_Ctl - Turn off reception and let RxData turn it
* on later
*/
writew(ETHER_RX_CTL_RXHALT_MSK,ETHER_RX_CTL(dev->base_addr));
}
static void ether00_set_multicast(struct net_device* dev)
{
int count=dev->mc_count;
/* Set promiscuous mode if it's asked for. */
if (dev->flags&IFF_PROMISC){
writew( ETHER_ARC_CTL_COMPEN_MSK |
ETHER_ARC_CTL_BROADACC_MSK |
ETHER_ARC_CTL_GROUPACC_MSK |
ETHER_ARC_CTL_STATIONACC_MSK,
ETHER_ARC_CTL(dev->base_addr));
return;
}
/*
* Get all multicast packets if required, or if there are too
* many addresses to fit in hardware
*/
if (dev->flags & IFF_ALLMULTI){
writew( ETHER_ARC_CTL_COMPEN_MSK |
ETHER_ARC_CTL_GROUPACC_MSK |
ETHER_ARC_CTL_BROADACC_MSK,
ETHER_ARC_CTL(dev->base_addr));
return;
}
if (dev->mc_count > (ETHER_ARC_SIZE - 1)){
printk(KERN_WARNING "Too many multicast addresses for hardware to filter - receiving all multicast packets\n");
writew( ETHER_ARC_CTL_COMPEN_MSK |
ETHER_ARC_CTL_GROUPACC_MSK |
ETHER_ARC_CTL_BROADACC_MSK,
ETHER_ARC_CTL(dev->base_addr));
return;
}
if(dev->mc_count){
struct dev_mc_list *mc_list_ent=dev->mc_list;
unsigned int temp,i;
DEBUG(printk("mc_count=%d mc_list=%#x\n",dev-> mc_count, dev->mc_list));
DEBUG(printk("mc addr=%02#x%02x%02x%02x%02x%02x\n",
mc_list_ent->dmi_addr[5],
mc_list_ent->dmi_addr[4],
mc_list_ent->dmi_addr[3],
mc_list_ent->dmi_addr[2],
mc_list_ent->dmi_addr[1],
mc_list_ent->dmi_addr[0]);)
/*
* The first 6 bytes are the MAC address, so
* don't change them!
*/
writew(4,ETHER_ARC_ADR(dev->base_addr));
temp=readl(ETHER_ARC_DATA(dev->base_addr));
temp&=0xffff0000;
/* Disable the current multicast stuff */
writel(1,ETHER_ARC_ENA(dev->base_addr));
for(;;){
temp|=mc_list_ent->dmi_addr[1] |
mc_list_ent->dmi_addr[0]<<8;
writel(temp,ETHER_ARC_DATA(dev->base_addr));
i=readl(ETHER_ARC_ADR(dev->base_addr));
writew(i+4,ETHER_ARC_ADR(dev->base_addr));
temp=mc_list_ent->dmi_addr[5]|
mc_list_ent->dmi_addr[4]<<8 |
mc_list_ent->dmi_addr[3]<<16 |
mc_list_ent->dmi_addr[2]<<24;
writel(temp,ETHER_ARC_DATA(dev->base_addr));
count--;
if(!mc_list_ent->next || !count){
break;
}
DEBUG(printk("mc_list_next=%#x\n",mc_list_ent->next);)
mc_list_ent=mc_list_ent->next;
i=readl(ETHER_ARC_ADR(dev->base_addr));
writel(i+4,ETHER_ARC_ADR(dev->base_addr));
temp=mc_list_ent->dmi_addr[3]|
mc_list_ent->dmi_addr[2]<<8 |
mc_list_ent->dmi_addr[1]<<16 |
mc_list_ent->dmi_addr[0]<<24;
writel(temp,ETHER_ARC_DATA(dev->base_addr));
i=readl(ETHER_ARC_ADR(dev->base_addr));
writel(i+4,ETHER_ARC_ADR(dev->base_addr));
temp=mc_list_ent->dmi_addr[4]<<16 |
mc_list_ent->dmi_addr[5]<<24;
writel(temp,ETHER_ARC_DATA(dev->base_addr));
count--;
if(!mc_list_ent->next || !count){
break;
}
mc_list_ent=mc_list_ent->next;
}
if(count)
printk(KERN_WARNING "Multicast list size error\n");
writew( ETHER_ARC_CTL_BROADACC_MSK|
ETHER_ARC_CTL_COMPEN_MSK,
ETHER_ARC_CTL(dev->base_addr));
}
/* enable the active ARC enties */
writew((1<<(count+2))-1,ETHER_ARC_ENA(dev->base_addr));
}
static int ether00_open(struct net_device* dev)
{
int result,tmp;
struct net_priv* priv;
if (!is_valid_ether_addr(dev->dev_addr))
return -EINVAL;
/* Install interrupt handlers */
result=request_irq(dev->irq,ether00_int,0,"ether00",dev);
if(result)
goto open_err1;
result=request_irq(2,ether00_phy_int,0,"ether00_phy",dev);
if(result)
goto open_err2;
ether00_reset(dev);
result=ether00_mem_init(dev);
if(result)
goto open_err3;
ether00_setup_ethernet_address(dev);
ether00_set_multicast(dev);
result=ether00_write_phy(dev,PHY_CONTROL, PHY_CONTROL_ANEGEN_MSK | PHY_CONTROL_RANEG_MSK);
if(result)
goto open_err4;
result=ether00_write_phy(dev,PHY_IRQ_CONTROL, PHY_IRQ_CONTROL_LS_CHG_IE_MSK |
PHY_IRQ_CONTROL_ANEG_COMP_IE_MSK);
if(result)
goto open_err4;
/* Start the device enable interrupts */
writew(ETHER_RX_CTL_RXEN_MSK
// | ETHER_RX_CTL_STRIPCRC_MSK
| ETHER_RX_CTL_ENGOOD_MSK
| ETHER_RX_CTL_ENRXPAR_MSK| ETHER_RX_CTL_ENLONGERR_MSK
| ETHER_RX_CTL_ENOVER_MSK| ETHER_RX_CTL_ENCRCERR_MSK,
ETHER_RX_CTL(dev->base_addr));
writew(ETHER_TX_CTL_TXEN_MSK|
ETHER_TX_CTL_ENEXDEFER_MSK|
ETHER_TX_CTL_ENLCARR_MSK|
ETHER_TX_CTL_ENEXCOLL_MSK|
ETHER_TX_CTL_ENLATECOLL_MSK|
ETHER_TX_CTL_ENTXPAR_MSK|
ETHER_TX_CTL_ENCOMP_MSK,
ETHER_TX_CTL(dev->base_addr));
tmp=readl(ETHER_DMA_CTL(dev->base_addr));
writel(tmp&~ETHER_DMA_CTL_INTMASK_MSK,ETHER_DMA_CTL(dev->base_addr));
return 0;
open_err4:
ether00_reset(dev);
open_err3:
free_irq(2,dev);
open_err2:
free_irq(dev->irq,dev);
open_err1:
return result;
}
static int ether00_tx(struct sk_buff* skb, struct net_device* dev)
{
struct net_priv *priv=dev->priv;
struct tx_fda_ent *fda_ptr;
int i;
/*
* Find an empty slot in which to stick the frame
*/
fda_ptr=(struct tx_fda_ent*)__dma_va(readl(ETHER_TXFRMPTR(dev->base_addr)));
i=0;
while(i<TX_NUM_FDESC){
if (fda_ptr->fd.FDStat||(fda_ptr->fd.FDCtl & FDCTL_COWNSFD_MSK)){
fda_ptr =(struct tx_fda_ent*) __dma_va((struct tx_fda_ent*)fda_ptr->fd.FDNext);
}
else {
break;
}
i++;
}
/* Write the skb data from the cache*/
consistent_sync(skb->data,skb->len,PCI_DMA_TODEVICE);
fda_ptr->bd.BuffData=(char*)__pa(skb->data);
fda_ptr->bd.BuffLength=(unsigned short)skb->len;
/* Save the pointer to the skb for freeing later */
fda_ptr->fd.FDSystem=(unsigned int)skb;
fda_ptr->fd.FDStat=0;
/* Pass ownership of the buffers to the controller */
fda_ptr->fd.FDCtl=1;
fda_ptr->fd.FDCtl|=FDCTL_COWNSFD_MSK;
/* If the next buffer in the list is full, stop the queue */
fda_ptr=(struct tx_fda_ent*)__dma_va(fda_ptr->fd.FDNext);
if ((fda_ptr->fd.FDStat)||(fda_ptr->fd.FDCtl & FDCTL_COWNSFD_MSK)){
netif_stop_queue(dev);
priv->queue_stopped=1;
}
return 0;
}
static struct net_device_stats *ether00_stats(struct net_device* dev)
{
struct net_priv *priv=dev->priv;
return &priv->stats;
}
static int ether00_stop(struct net_device* dev)
{
struct net_priv *priv=dev->priv;
int tmp;
/* Stop/disable the device. */
tmp=readw(ETHER_RX_CTL(dev->base_addr));
tmp&=~(ETHER_RX_CTL_RXEN_MSK | ETHER_RX_CTL_ENGOOD_MSK);
tmp|=ETHER_RX_CTL_RXHALT_MSK;
writew(tmp,ETHER_RX_CTL(dev->base_addr));
tmp=readl(ETHER_TX_CTL(dev->base_addr));
tmp&=~ETHER_TX_CTL_TXEN_MSK;
tmp|=ETHER_TX_CTL_TXHALT_MSK;
writel(tmp,ETHER_TX_CTL(dev->base_addr));
/* Free up system resources */
free_irq(dev->irq,dev);
free_irq(2,dev);
iounmap(priv->dma_data);
return 0;
}
static void ether00_get_ethernet_address(struct net_device* dev)
{
struct mtd_info *mymtd=NULL;
int i;
size_t retlen;
/*
* For the Epxa10 dev board (camelot), the ethernet MAC
* address is of the form 00:aa:aa:00:xx:xx where
* 00:aa:aa is the Altera vendor ID and xx:xx is the
* last 2 bytes of the board serial number, as programmed
* into the OTP area of the flash device on EBI1. If this
* isn't an expa10 dev board, or there's no mtd support to
* read the serial number from flash then we'll force the
* use to set their own mac address using ifconfig.
*/
#ifdef CONFIG_ARCH_CAMELOT
#ifdef CONFIG_MTD
/* get the mtd_info structure for the first mtd device*/
for(i=0;i<MAX_MTD_DEVICES;i++){
mymtd=get_mtd_device(NULL,i);
if(!mymtd||!strcmp(mymtd->name,"EPXA10DB flash"))
break;
}
if(!mymtd || !mymtd->read_user_prot_reg){
printk(KERN_WARNING "%s: Failed to read MAC address from flash\n",dev->name);
}else{
mymtd->read_user_prot_reg(mymtd,2,1,&retlen,&dev->dev_addr[5]);
mymtd->read_user_prot_reg(mymtd,3,1,&retlen,&dev->dev_addr[4]);
dev->dev_addr[3]=0;
dev->dev_addr[2]=vendor_id[1];
dev->dev_addr[1]=vendor_id[0];
dev->dev_addr[0]=0;
}
#else
printk(KERN_WARNING "%s: MTD support required to read MAC address from EPXA10 dev board\n", dev->name);
#endif
#endif
if (!is_valid_ether_addr(dev->dev_addr))
printk("%s: Invalid ethernet MAC address. Please set using "
"ifconfig\n", dev->name);
}
/*
* Keep a mapping of dev_info addresses -> port lines to use when
* removing ports dev==NULL indicates unused entry
*/
static struct net_device* dev_list[ETH_NR];
static int ether00_add_device(struct pldhs_dev_info* dev_info,void* dev_ps_data)
{
struct net_device *dev;
struct net_priv *priv;
void *map_addr;
int result;
int i;
i=0;
while(dev_list[i] && i < ETH_NR)
i++;
if(i==ETH_NR){
printk(KERN_WARNING "ether00: Maximum number of ports reached\n");
return 0;
}
if (!request_mem_region(dev_info->base_addr, MAC_REG_SIZE, "ether00"))
return -EBUSY;
dev = alloc_etherdev(sizeof(struct net_priv));
if(!dev) {
result = -ENOMEM;
goto out_release;
}
priv = dev->priv;
priv->tq_memupdate.routine=ether00_mem_update;
priv->tq_memupdate.data=(void*) dev;
spin_lock_init(&priv->rx_lock);
map_addr=ioremap_nocache(dev_info->base_addr,SZ_4K);
if(!map_addr){
result = -ENOMEM;
out_kfree;
}
dev->open=ether00_open;
dev->stop=ether00_stop;
dev->set_multicast_list=ether00_set_multicast;
dev->hard_start_xmit=ether00_tx;
dev->get_stats=ether00_stats;
ether00_get_ethernet_address(dev);
SET_MODULE_OWNER(dev);
dev->base_addr=(unsigned int)map_addr;
dev->irq=dev_info->irq;
dev->features=NETIF_F_DYNALLOC | NETIF_F_HW_CSUM;
result=register_netdev(dev);
if(result){
printk("Ether00: Error %i registering driver\n",result);
goto out_unmap;
}
printk("registered ether00 device at %#x\n",dev_info->base_addr);
dev_list[i]=dev;
return result;
out_unmap:
iounmap(map_addr);
out_kfree:
free_netdev(dev);
out_release:
release_mem_region(dev_info->base_addr, MAC_REG_SIZE);
return result;
}
static int ether00_remove_devices(void)
{
int i;
for(i=0;i<ETH_NR;i++){
if(dev_list[i]){
netif_device_detach(dev_list[i]);
unregister_netdev(dev_list[i]);
iounmap((void*)dev_list[i]->base_addr);
release_mem_region(dev_list[i]->base_addr, MAC_REG_SIZE);
free_netdev(dev_list[i]);
dev_list[i]=0;
}
}
return 0;
}
static struct pld_hotswap_ops ether00_pldhs_ops={
.name = ETHER00_NAME,
.add_device = ether00_add_device,
.remove_devices = ether00_remove_devices,
};
static void __exit ether00_cleanup_module(void)
{
int result;
result=ether00_remove_devices();
if(result)
printk(KERN_WARNING "ether00: failed to remove all devices\n");
pldhs_unregister_driver(ETHER00_NAME);
}
module_exit(ether00_cleanup_module);
static int __init ether00_mod_init(void)
{
printk("mod init\n");
return pldhs_register_driver(&ether00_pldhs_ops);
}
module_init(ether00_mod_init);