kernel-aes67/include/linux/usb.h

1162 lines
47 KiB
C
Raw Normal View History

#ifndef __LINUX_USB_H
#define __LINUX_USB_H
#include <linux/mod_devicetable.h>
#include <linux/usb_ch9.h>
#define USB_MAJOR 180
#ifdef __KERNEL__
#include <linux/config.h>
#include <linux/errno.h> /* for -ENODEV */
#include <linux/delay.h> /* for mdelay() */
#include <linux/interrupt.h> /* for in_interrupt() */
#include <linux/list.h> /* for struct list_head */
#include <linux/kref.h> /* for struct kref */
#include <linux/device.h> /* for struct device */
#include <linux/fs.h> /* for struct file_operations */
#include <linux/completion.h> /* for struct completion */
#include <linux/sched.h> /* for current && schedule_timeout */
struct usb_device;
struct usb_driver;
/*-------------------------------------------------------------------------*/
/*
* Host-side wrappers for standard USB descriptors ... these are parsed
* from the data provided by devices. Parsing turns them from a flat
* sequence of descriptors into a hierarchy:
*
* - devices have one (usually) or more configs;
* - configs have one (often) or more interfaces;
* - interfaces have one (usually) or more settings;
* - each interface setting has zero or (usually) more endpoints.
*
* And there might be other descriptors mixed in with those.
*
* Devices may also have class-specific or vendor-specific descriptors.
*/
/**
* struct usb_host_endpoint - host-side endpoint descriptor and queue
* @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
* @urb_list: urbs queued to this endpoint; maintained by usbcore
* @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
* with one or more transfer descriptors (TDs) per urb
* @extra: descriptors following this endpoint in the configuration
* @extralen: how many bytes of "extra" are valid
*
* USB requests are always queued to a given endpoint, identified by a
* descriptor within an active interface in a given USB configuration.
*/
struct usb_host_endpoint {
struct usb_endpoint_descriptor desc;
struct list_head urb_list;
void *hcpriv;
unsigned char *extra; /* Extra descriptors */
int extralen;
};
/* host-side wrapper for one interface setting's parsed descriptors */
struct usb_host_interface {
struct usb_interface_descriptor desc;
/* array of desc.bNumEndpoint endpoints associated with this
* interface setting. these will be in no particular order.
*/
struct usb_host_endpoint *endpoint;
char *string; /* iInterface string, if present */
unsigned char *extra; /* Extra descriptors */
int extralen;
};
enum usb_interface_condition {
USB_INTERFACE_UNBOUND = 0,
USB_INTERFACE_BINDING,
USB_INTERFACE_BOUND,
USB_INTERFACE_UNBINDING,
};
/**
* struct usb_interface - what usb device drivers talk to
* @altsetting: array of interface structures, one for each alternate
* setting that may be selected. Each one includes a set of
* endpoint configurations. They will be in no particular order.
* @num_altsetting: number of altsettings defined.
* @cur_altsetting: the current altsetting.
* @driver: the USB driver that is bound to this interface.
* @minor: the minor number assigned to this interface, if this
* interface is bound to a driver that uses the USB major number.
* If this interface does not use the USB major, this field should
* be unused. The driver should set this value in the probe()
* function of the driver, after it has been assigned a minor
* number from the USB core by calling usb_register_dev().
* @condition: binding state of the interface: not bound, binding
* (in probe()), bound to a driver, or unbinding (in disconnect())
* @dev: driver model's view of this device
* @class_dev: driver model's class view of this device.
*
* USB device drivers attach to interfaces on a physical device. Each
* interface encapsulates a single high level function, such as feeding
* an audio stream to a speaker or reporting a change in a volume control.
* Many USB devices only have one interface. The protocol used to talk to
* an interface's endpoints can be defined in a usb "class" specification,
* or by a product's vendor. The (default) control endpoint is part of
* every interface, but is never listed among the interface's descriptors.
*
* The driver that is bound to the interface can use standard driver model
* calls such as dev_get_drvdata() on the dev member of this structure.
*
* Each interface may have alternate settings. The initial configuration
* of a device sets altsetting 0, but the device driver can change
* that setting using usb_set_interface(). Alternate settings are often
* used to control the the use of periodic endpoints, such as by having
* different endpoints use different amounts of reserved USB bandwidth.
* All standards-conformant USB devices that use isochronous endpoints
* will use them in non-default settings.
*
* The USB specification says that alternate setting numbers must run from
* 0 to one less than the total number of alternate settings. But some
* devices manage to mess this up, and the structures aren't necessarily
* stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
* look up an alternate setting in the altsetting array based on its number.
*/
struct usb_interface {
/* array of alternate settings for this interface,
* stored in no particular order */
struct usb_host_interface *altsetting;
struct usb_host_interface *cur_altsetting; /* the currently
* active alternate setting */
unsigned num_altsetting; /* number of alternate settings */
int minor; /* minor number this interface is bound to */
enum usb_interface_condition condition; /* state of binding */
struct device dev; /* interface specific device info */
struct class_device *class_dev;
};
#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
#define interface_to_usbdev(intf) \
container_of(intf->dev.parent, struct usb_device, dev)
static inline void *usb_get_intfdata (struct usb_interface *intf)
{
return dev_get_drvdata (&intf->dev);
}
static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
{
dev_set_drvdata(&intf->dev, data);
}
struct usb_interface *usb_get_intf(struct usb_interface *intf);
void usb_put_intf(struct usb_interface *intf);
/* this maximum is arbitrary */
#define USB_MAXINTERFACES 32
/**
* struct usb_interface_cache - long-term representation of a device interface
* @num_altsetting: number of altsettings defined.
* @ref: reference counter.
* @altsetting: variable-length array of interface structures, one for
* each alternate setting that may be selected. Each one includes a
* set of endpoint configurations. They will be in no particular order.
*
* These structures persist for the lifetime of a usb_device, unlike
* struct usb_interface (which persists only as long as its configuration
* is installed). The altsetting arrays can be accessed through these
* structures at any time, permitting comparison of configurations and
* providing support for the /proc/bus/usb/devices pseudo-file.
*/
struct usb_interface_cache {
unsigned num_altsetting; /* number of alternate settings */
struct kref ref; /* reference counter */
/* variable-length array of alternate settings for this interface,
* stored in no particular order */
struct usb_host_interface altsetting[0];
};
#define ref_to_usb_interface_cache(r) \
container_of(r, struct usb_interface_cache, ref)
#define altsetting_to_usb_interface_cache(a) \
container_of(a, struct usb_interface_cache, altsetting[0])
/**
* struct usb_host_config - representation of a device's configuration
* @desc: the device's configuration descriptor.
* @string: pointer to the cached version of the iConfiguration string, if
* present for this configuration.
* @interface: array of pointers to usb_interface structures, one for each
* interface in the configuration. The number of interfaces is stored
* in desc.bNumInterfaces. These pointers are valid only while the
* the configuration is active.
* @intf_cache: array of pointers to usb_interface_cache structures, one
* for each interface in the configuration. These structures exist
* for the entire life of the device.
* @extra: pointer to buffer containing all extra descriptors associated
* with this configuration (those preceding the first interface
* descriptor).
* @extralen: length of the extra descriptors buffer.
*
* USB devices may have multiple configurations, but only one can be active
* at any time. Each encapsulates a different operational environment;
* for example, a dual-speed device would have separate configurations for
* full-speed and high-speed operation. The number of configurations
* available is stored in the device descriptor as bNumConfigurations.
*
* A configuration can contain multiple interfaces. Each corresponds to
* a different function of the USB device, and all are available whenever
* the configuration is active. The USB standard says that interfaces
* are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
* of devices get this wrong. In addition, the interface array is not
* guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
* look up an interface entry based on its number.
*
* Device drivers should not attempt to activate configurations. The choice
* of which configuration to install is a policy decision based on such
* considerations as available power, functionality provided, and the user's
* desires (expressed through hotplug scripts). However, drivers can call
* usb_reset_configuration() to reinitialize the current configuration and
* all its interfaces.
*/
struct usb_host_config {
struct usb_config_descriptor desc;
char *string;
/* the interfaces associated with this configuration,
* stored in no particular order */
struct usb_interface *interface[USB_MAXINTERFACES];
/* Interface information available even when this is not the
* active configuration */
struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
unsigned char *extra; /* Extra descriptors */
int extralen;
};
int __usb_get_extra_descriptor(char *buffer, unsigned size,
unsigned char type, void **ptr);
#define usb_get_extra_descriptor(ifpoint,type,ptr)\
__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
type,(void**)ptr)
/* -------------------------------------------------------------------------- */
struct usb_operations;
/* USB device number allocation bitmap */
struct usb_devmap {
unsigned long devicemap[128 / (8*sizeof(unsigned long))];
};
/*
* Allocated per bus (tree of devices) we have:
*/
struct usb_bus {
struct device *controller; /* host/master side hardware */
int busnum; /* Bus number (in order of reg) */
char *bus_name; /* stable id (PCI slot_name etc) */
u8 otg_port; /* 0, or number of OTG/HNP port */
unsigned is_b_host:1; /* true during some HNP roleswitches */
unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
int devnum_next; /* Next open device number in round-robin allocation */
struct usb_devmap devmap; /* device address allocation map */
struct usb_operations *op; /* Operations (specific to the HC) */
struct usb_device *root_hub; /* Root hub */
struct list_head bus_list; /* list of busses */
void *hcpriv; /* Host Controller private data */
int bandwidth_allocated; /* on this bus: how much of the time
* reserved for periodic (intr/iso)
* requests is used, on average?
* Units: microseconds/frame.
* Limits: Full/low speed reserve 90%,
* while high speed reserves 80%.
*/
int bandwidth_int_reqs; /* number of Interrupt requests */
int bandwidth_isoc_reqs; /* number of Isoc. requests */
struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
struct class_device class_dev; /* class device for this bus */
void (*release)(struct usb_bus *bus); /* function to destroy this bus's memory */
#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
struct mon_bus *mon_bus; /* non-null when associated */
int monitored; /* non-zero when monitored */
#endif
};
#define to_usb_bus(d) container_of(d, struct usb_bus, class_dev)
/* -------------------------------------------------------------------------- */
/* This is arbitrary.
* From USB 2.0 spec Table 11-13, offset 7, a hub can
* have up to 255 ports. The most yet reported is 10.
*/
#define USB_MAXCHILDREN (16)
struct usb_tt;
/*
* struct usb_device - kernel's representation of a USB device
*
* FIXME: Write the kerneldoc!
*
* Usbcore drivers should not set usbdev->state directly. Instead use
* usb_set_device_state().
*/
struct usb_device {
int devnum; /* Address on USB bus */
char devpath [16]; /* Use in messages: /port/port/... */
enum usb_device_state state; /* configured, not attached, etc */
enum usb_device_speed speed; /* high/full/low (or error) */
struct usb_tt *tt; /* low/full speed dev, highspeed hub */
int ttport; /* device port on that tt hub */
struct semaphore serialize;
unsigned int toggle[2]; /* one bit for each endpoint ([0] = IN, [1] = OUT) */
struct usb_device *parent; /* our hub, unless we're the root */
struct usb_bus *bus; /* Bus we're part of */
struct usb_host_endpoint ep0;
struct device dev; /* Generic device interface */
struct usb_device_descriptor descriptor;/* Descriptor */
struct usb_host_config *config; /* All of the configs */
struct usb_host_config *actconfig;/* the active configuration */
struct usb_host_endpoint *ep_in[16];
struct usb_host_endpoint *ep_out[16];
char **rawdescriptors; /* Raw descriptors for each config */
int have_langid; /* whether string_langid is valid yet */
int string_langid; /* language ID for strings */
char *product;
char *manufacturer;
char *serial; /* static strings from the device */
struct list_head filelist;
struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
/*
* Child devices - these can be either new devices
* (if this is a hub device), or different instances
* of this same device.
*
* Each instance needs its own set of data structures.
*/
int maxchild; /* Number of ports if hub */
struct usb_device *children[USB_MAXCHILDREN];
};
#define to_usb_device(d) container_of(d, struct usb_device, dev)
extern struct usb_device *usb_get_dev(struct usb_device *dev);
extern void usb_put_dev(struct usb_device *dev);
extern void usb_lock_device(struct usb_device *udev);
extern int usb_trylock_device(struct usb_device *udev);
extern int usb_lock_device_for_reset(struct usb_device *udev,
struct usb_interface *iface);
extern void usb_unlock_device(struct usb_device *udev);
/* USB port reset for device reinitialization */
extern int usb_reset_device(struct usb_device *dev);
extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
/*-------------------------------------------------------------------------*/
/* for drivers using iso endpoints */
extern int usb_get_current_frame_number (struct usb_device *usb_dev);
/* used these for multi-interface device registration */
extern int usb_driver_claim_interface(struct usb_driver *driver,
struct usb_interface *iface, void* priv);
/**
* usb_interface_claimed - returns true iff an interface is claimed
* @iface: the interface being checked
*
* Returns true (nonzero) iff the interface is claimed, else false (zero).
* Callers must own the driver model's usb bus readlock. So driver
* probe() entries don't need extra locking, but other call contexts
* may need to explicitly claim that lock.
*
*/
static inline int usb_interface_claimed(struct usb_interface *iface) {
return (iface->dev.driver != NULL);
}
extern void usb_driver_release_interface(struct usb_driver *driver,
struct usb_interface *iface);
const struct usb_device_id *usb_match_id(struct usb_interface *interface,
const struct usb_device_id *id);
extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
int minor);
extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev,
unsigned ifnum);
extern struct usb_host_interface *usb_altnum_to_altsetting(
struct usb_interface *intf, unsigned int altnum);
/**
* usb_make_path - returns stable device path in the usb tree
* @dev: the device whose path is being constructed
* @buf: where to put the string
* @size: how big is "buf"?
*
* Returns length of the string (> 0) or negative if size was too small.
*
* This identifier is intended to be "stable", reflecting physical paths in
* hardware such as physical bus addresses for host controllers or ports on
* USB hubs. That makes it stay the same until systems are physically
* reconfigured, by re-cabling a tree of USB devices or by moving USB host
* controllers. Adding and removing devices, including virtual root hubs
* in host controller driver modules, does not change these path identifers;
* neither does rebooting or re-enumerating. These are more useful identifiers
* than changeable ("unstable") ones like bus numbers or device addresses.
*
* With a partial exception for devices connected to USB 2.0 root hubs, these
* identifiers are also predictable. So long as the device tree isn't changed,
* plugging any USB device into a given hub port always gives it the same path.
* Because of the use of "companion" controllers, devices connected to ports on
* USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
* high speed, and a different one if they are full or low speed.
*/
static inline int usb_make_path (struct usb_device *dev, char *buf, size_t size)
{
int actual;
actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, dev->devpath);
return (actual >= (int)size) ? -1 : actual;
}
/*-------------------------------------------------------------------------*/
#define USB_DEVICE_ID_MATCH_DEVICE (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
#define USB_DEVICE_ID_MATCH_DEV_RANGE (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
#define USB_DEVICE_ID_MATCH_DEV_INFO \
(USB_DEVICE_ID_MATCH_DEV_CLASS | USB_DEVICE_ID_MATCH_DEV_SUBCLASS | USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
#define USB_DEVICE_ID_MATCH_INT_INFO \
(USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL)
/**
* USB_DEVICE - macro used to describe a specific usb device
* @vend: the 16 bit USB Vendor ID
* @prod: the 16 bit USB Product ID
*
* This macro is used to create a struct usb_device_id that matches a
* specific device.
*/
#define USB_DEVICE(vend,prod) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), .idProduct = (prod)
/**
* USB_DEVICE_VER - macro used to describe a specific usb device with a version range
* @vend: the 16 bit USB Vendor ID
* @prod: the 16 bit USB Product ID
* @lo: the bcdDevice_lo value
* @hi: the bcdDevice_hi value
*
* This macro is used to create a struct usb_device_id that matches a
* specific device, with a version range.
*/
#define USB_DEVICE_VER(vend,prod,lo,hi) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, .idVendor = (vend), .idProduct = (prod), .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
/**
* USB_DEVICE_INFO - macro used to describe a class of usb devices
* @cl: bDeviceClass value
* @sc: bDeviceSubClass value
* @pr: bDeviceProtocol value
*
* This macro is used to create a struct usb_device_id that matches a
* specific class of devices.
*/
#define USB_DEVICE_INFO(cl,sc,pr) \
.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
/**
* USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
* @cl: bInterfaceClass value
* @sc: bInterfaceSubClass value
* @pr: bInterfaceProtocol value
*
* This macro is used to create a struct usb_device_id that matches a
* specific class of interfaces.
*/
#define USB_INTERFACE_INFO(cl,sc,pr) \
.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
/* -------------------------------------------------------------------------- */
/**
* struct usb_driver - identifies USB driver to usbcore
* @owner: Pointer to the module owner of this driver; initialize
* it using THIS_MODULE.
* @name: The driver name should be unique among USB drivers,
* and should normally be the same as the module name.
* @probe: Called to see if the driver is willing to manage a particular
* interface on a device. If it is, probe returns zero and uses
* dev_set_drvdata() to associate driver-specific data with the
* interface. It may also use usb_set_interface() to specify the
* appropriate altsetting. If unwilling to manage the interface,
* return a negative errno value.
* @disconnect: Called when the interface is no longer accessible, usually
* because its device has been (or is being) disconnected or the
* driver module is being unloaded.
* @ioctl: Used for drivers that want to talk to userspace through
* the "usbfs" filesystem. This lets devices provide ways to
* expose information to user space regardless of where they
* do (or don't) show up otherwise in the filesystem.
* @suspend: Called when the device is going to be suspended by the system.
* @resume: Called when the device is being resumed by the system.
* @id_table: USB drivers use ID table to support hotplugging.
* Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
* or your driver's probe function will never get called.
* @driver: the driver model core driver structure.
*
* USB drivers must provide a name, probe() and disconnect() methods,
* and an id_table. Other driver fields are optional.
*
* The id_table is used in hotplugging. It holds a set of descriptors,
* and specialized data may be associated with each entry. That table
* is used by both user and kernel mode hotplugging support.
*
* The probe() and disconnect() methods are called in a context where
* they can sleep, but they should avoid abusing the privilege. Most
* work to connect to a device should be done when the device is opened,
* and undone at the last close. The disconnect code needs to address
* concurrency issues with respect to open() and close() methods, as
* well as forcing all pending I/O requests to complete (by unlinking
* them as necessary, and blocking until the unlinks complete).
*/
struct usb_driver {
struct module *owner;
const char *name;
int (*probe) (struct usb_interface *intf,
const struct usb_device_id *id);
void (*disconnect) (struct usb_interface *intf);
int (*ioctl) (struct usb_interface *intf, unsigned int code, void *buf);
int (*suspend) (struct usb_interface *intf, pm_message_t message);
int (*resume) (struct usb_interface *intf);
const struct usb_device_id *id_table;
struct device_driver driver;
};
#define to_usb_driver(d) container_of(d, struct usb_driver, driver)
extern struct bus_type usb_bus_type;
/**
* struct usb_class_driver - identifies a USB driver that wants to use the USB major number
* @name: devfs name for this driver. Will also be used by the driver
* class code to create a usb class device.
* @fops: pointer to the struct file_operations of this driver.
* @mode: the mode for the devfs file to be created for this driver.
* @minor_base: the start of the minor range for this driver.
*
* This structure is used for the usb_register_dev() and
* usb_unregister_dev() functions, to consolidate a number of the
* parameters used for them.
*/
struct usb_class_driver {
char *name;
struct file_operations *fops;
mode_t mode;
int minor_base;
};
/*
* use these in module_init()/module_exit()
* and don't forget MODULE_DEVICE_TABLE(usb, ...)
*/
extern int usb_register(struct usb_driver *);
extern void usb_deregister(struct usb_driver *);
extern int usb_register_dev(struct usb_interface *intf,
struct usb_class_driver *class_driver);
extern void usb_deregister_dev(struct usb_interface *intf,
struct usb_class_driver *class_driver);
extern int usb_disabled(void);
/* -------------------------------------------------------------------------- */
/*
* URB support, for asynchronous request completions
*/
/*
* urb->transfer_flags:
*/
#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame ignored */
#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
#define URB_ASYNC_UNLINK 0x0010 /* usb_unlink_urb() returns asap */
#define URB_NO_FSBR 0x0020 /* UHCI-specific */
#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUTs with short packet */
#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt needed */
struct usb_iso_packet_descriptor {
unsigned int offset;
unsigned int length; /* expected length */
unsigned int actual_length;
unsigned int status;
};
struct urb;
struct pt_regs;
typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
/**
* struct urb - USB Request Block
* @urb_list: For use by current owner of the URB.
* @pipe: Holds endpoint number, direction, type, and more.
* Create these values with the eight macros available;
* usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
* (control), "bulk", "int" (interrupt), or "iso" (isochronous).
* For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
* numbers range from zero to fifteen. Note that "in" endpoint two
* is a different endpoint (and pipe) from "out" endpoint two.
* The current configuration controls the existence, type, and
* maximum packet size of any given endpoint.
* @dev: Identifies the USB device to perform the request.
* @status: This is read in non-iso completion functions to get the
* status of the particular request. ISO requests only use it
* to tell whether the URB was unlinked; detailed status for
* each frame is in the fields of the iso_frame-desc.
* @transfer_flags: A variety of flags may be used to affect how URB
* submission, unlinking, or operation are handled. Different
* kinds of URB can use different flags.
* @transfer_buffer: This identifies the buffer to (or from) which
* the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
* is set). This buffer must be suitable for DMA; allocate it with
* kmalloc() or equivalent. For transfers to "in" endpoints, contents
* of this buffer will be modified. This buffer is used for the data
* stage of control transfers.
* @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
* the device driver is saying that it provided this DMA address,
* which the host controller driver should use in preference to the
* transfer_buffer.
* @transfer_buffer_length: How big is transfer_buffer. The transfer may
* be broken up into chunks according to the current maximum packet
* size for the endpoint, which is a function of the configuration
* and is encoded in the pipe. When the length is zero, neither
* transfer_buffer nor transfer_dma is used.
* @actual_length: This is read in non-iso completion functions, and
* it tells how many bytes (out of transfer_buffer_length) were
* transferred. It will normally be the same as requested, unless
* either an error was reported or a short read was performed.
* The URB_SHORT_NOT_OK transfer flag may be used to make such
* short reads be reported as errors.
* @setup_packet: Only used for control transfers, this points to eight bytes
* of setup data. Control transfers always start by sending this data
* to the device. Then transfer_buffer is read or written, if needed.
* @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
* device driver has provided this DMA address for the setup packet.
* The host controller driver should use this in preference to
* setup_packet.
* @start_frame: Returns the initial frame for isochronous transfers.
* @number_of_packets: Lists the number of ISO transfer buffers.
* @interval: Specifies the polling interval for interrupt or isochronous
* transfers. The units are frames (milliseconds) for for full and low
* speed devices, and microframes (1/8 millisecond) for highspeed ones.
* @error_count: Returns the number of ISO transfers that reported errors.
* @context: For use in completion functions. This normally points to
* request-specific driver context.
* @complete: Completion handler. This URB is passed as the parameter to the
* completion function. The completion function may then do what
* it likes with the URB, including resubmitting or freeing it.
* @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
* collect the transfer status for each buffer.
*
* This structure identifies USB transfer requests. URBs must be allocated by
* calling usb_alloc_urb() and freed with a call to usb_free_urb().
* Initialization may be done using various usb_fill_*_urb() functions. URBs
* are submitted using usb_submit_urb(), and pending requests may be canceled
* using usb_unlink_urb() or usb_kill_urb().
*
* Data Transfer Buffers:
*
* Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
* taken from the general page pool. That is provided by transfer_buffer
* (control requests also use setup_packet), and host controller drivers
* perform a dma mapping (and unmapping) for each buffer transferred. Those
* mapping operations can be expensive on some platforms (perhaps using a dma
* bounce buffer or talking to an IOMMU),
* although they're cheap on commodity x86 and ppc hardware.
*
* Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
* which tell the host controller driver that no such mapping is needed since
* the device driver is DMA-aware. For example, a device driver might
* allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
* When these transfer flags are provided, host controller drivers will
* attempt to use the dma addresses found in the transfer_dma and/or
* setup_dma fields rather than determining a dma address themselves. (Note
* that transfer_buffer and setup_packet must still be set because not all
* host controllers use DMA, nor do virtual root hubs).
*
* Initialization:
*
* All URBs submitted must initialize the dev, pipe, transfer_flags (may be
* zero), and complete fields.
* The URB_ASYNC_UNLINK transfer flag affects later invocations of
* the usb_unlink_urb() routine. Note: Failure to set URB_ASYNC_UNLINK
* with usb_unlink_urb() is deprecated. For synchronous unlinks use
* usb_kill_urb() instead.
*
* All URBs must also initialize
* transfer_buffer and transfer_buffer_length. They may provide the
* URB_SHORT_NOT_OK transfer flag, indicating that short reads are
* to be treated as errors; that flag is invalid for write requests.
*
* Bulk URBs may
* use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
* should always terminate with a short packet, even if it means adding an
* extra zero length packet.
*
* Control URBs must provide a setup_packet. The setup_packet and
* transfer_buffer may each be mapped for DMA or not, independently of
* the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
* URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
* URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
*
* Interrupt URBs must provide an interval, saying how often (in milliseconds
* or, for highspeed devices, 125 microsecond units)
* to poll for transfers. After the URB has been submitted, the interval
* field reflects how the transfer was actually scheduled.
* The polling interval may be more frequent than requested.
* For example, some controllers have a maximum interval of 32 milliseconds,
* while others support intervals of up to 1024 milliseconds.
* Isochronous URBs also have transfer intervals. (Note that for isochronous
* endpoints, as well as high speed interrupt endpoints, the encoding of
* the transfer interval in the endpoint descriptor is logarithmic.
* Device drivers must convert that value to linear units themselves.)
*
* Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
* the host controller to schedule the transfer as soon as bandwidth
* utilization allows, and then set start_frame to reflect the actual frame
* selected during submission. Otherwise drivers must specify the start_frame
* and handle the case where the transfer can't begin then. However, drivers
* won't know how bandwidth is currently allocated, and while they can
* find the current frame using usb_get_current_frame_number () they can't
* know the range for that frame number. (Ranges for frame counter values
* are HC-specific, and can go from 256 to 65536 frames from "now".)
*
* Isochronous URBs have a different data transfer model, in part because
* the quality of service is only "best effort". Callers provide specially
* allocated URBs, with number_of_packets worth of iso_frame_desc structures
* at the end. Each such packet is an individual ISO transfer. Isochronous
* URBs are normally queued, submitted by drivers to arrange that
* transfers are at least double buffered, and then explicitly resubmitted
* in completion handlers, so
* that data (such as audio or video) streams at as constant a rate as the
* host controller scheduler can support.
*
* Completion Callbacks:
*
* The completion callback is made in_interrupt(), and one of the first
* things that a completion handler should do is check the status field.
* The status field is provided for all URBs. It is used to report
* unlinked URBs, and status for all non-ISO transfers. It should not
* be examined before the URB is returned to the completion handler.
*
* The context field is normally used to link URBs back to the relevant
* driver or request state.
*
* When the completion callback is invoked for non-isochronous URBs, the
* actual_length field tells how many bytes were transferred. This field
* is updated even when the URB terminated with an error or was unlinked.
*
* ISO transfer status is reported in the status and actual_length fields
* of the iso_frame_desc array, and the number of errors is reported in
* error_count. Completion callbacks for ISO transfers will normally
* (re)submit URBs to ensure a constant transfer rate.
*
* Note that even fields marked "public" should not be touched by the driver
* when the urb is owned by the hcd, that is, since the call to
* usb_submit_urb() till the entry into the completion routine.
*/
struct urb
{
/* private, usb core and host controller only fields in the urb */
struct kref kref; /* reference count of the URB */
spinlock_t lock; /* lock for the URB */
void *hcpriv; /* private data for host controller */
int bandwidth; /* bandwidth for INT/ISO request */
atomic_t use_count; /* concurrent submissions counter */
u8 reject; /* submissions will fail */
/* public, documented fields in the urb that can be used by drivers */
struct list_head urb_list; /* list head for use by the urb owner */
struct usb_device *dev; /* (in) pointer to associated device */
unsigned int pipe; /* (in) pipe information */
int status; /* (return) non-ISO status */
unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
void *transfer_buffer; /* (in) associated data buffer */
dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
int transfer_buffer_length; /* (in) data buffer length */
int actual_length; /* (return) actual transfer length */
unsigned char *setup_packet; /* (in) setup packet (control only) */
dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
int start_frame; /* (modify) start frame (ISO) */
int number_of_packets; /* (in) number of ISO packets */
int interval; /* (modify) transfer interval (INT/ISO) */
int error_count; /* (return) number of ISO errors */
void *context; /* (in) context for completion */
usb_complete_t complete; /* (in) completion routine */
struct usb_iso_packet_descriptor iso_frame_desc[0]; /* (in) ISO ONLY */
};
/* -------------------------------------------------------------------------- */
/**
* usb_fill_control_urb - initializes a control urb
* @urb: pointer to the urb to initialize.
* @dev: pointer to the struct usb_device for this urb.
* @pipe: the endpoint pipe
* @setup_packet: pointer to the setup_packet buffer
* @transfer_buffer: pointer to the transfer buffer
* @buffer_length: length of the transfer buffer
* @complete: pointer to the usb_complete_t function
* @context: what to set the urb context to.
*
* Initializes a control urb with the proper information needed to submit
* it to a device.
*/
static inline void usb_fill_control_urb (struct urb *urb,
struct usb_device *dev,
unsigned int pipe,
unsigned char *setup_packet,
void *transfer_buffer,
int buffer_length,
usb_complete_t complete,
void *context)
{
spin_lock_init(&urb->lock);
urb->dev = dev;
urb->pipe = pipe;
urb->setup_packet = setup_packet;
urb->transfer_buffer = transfer_buffer;
urb->transfer_buffer_length = buffer_length;
urb->complete = complete;
urb->context = context;
}
/**
* usb_fill_bulk_urb - macro to help initialize a bulk urb
* @urb: pointer to the urb to initialize.
* @dev: pointer to the struct usb_device for this urb.
* @pipe: the endpoint pipe
* @transfer_buffer: pointer to the transfer buffer
* @buffer_length: length of the transfer buffer
* @complete: pointer to the usb_complete_t function
* @context: what to set the urb context to.
*
* Initializes a bulk urb with the proper information needed to submit it
* to a device.
*/
static inline void usb_fill_bulk_urb (struct urb *urb,
struct usb_device *dev,
unsigned int pipe,
void *transfer_buffer,
int buffer_length,
usb_complete_t complete,
void *context)
{
spin_lock_init(&urb->lock);
urb->dev = dev;
urb->pipe = pipe;
urb->transfer_buffer = transfer_buffer;
urb->transfer_buffer_length = buffer_length;
urb->complete = complete;
urb->context = context;
}
/**
* usb_fill_int_urb - macro to help initialize a interrupt urb
* @urb: pointer to the urb to initialize.
* @dev: pointer to the struct usb_device for this urb.
* @pipe: the endpoint pipe
* @transfer_buffer: pointer to the transfer buffer
* @buffer_length: length of the transfer buffer
* @complete: pointer to the usb_complete_t function
* @context: what to set the urb context to.
* @interval: what to set the urb interval to, encoded like
* the endpoint descriptor's bInterval value.
*
* Initializes a interrupt urb with the proper information needed to submit
* it to a device.
* Note that high speed interrupt endpoints use a logarithmic encoding of
* the endpoint interval, and express polling intervals in microframes
* (eight per millisecond) rather than in frames (one per millisecond).
*/
static inline void usb_fill_int_urb (struct urb *urb,
struct usb_device *dev,
unsigned int pipe,
void *transfer_buffer,
int buffer_length,
usb_complete_t complete,
void *context,
int interval)
{
spin_lock_init(&urb->lock);
urb->dev = dev;
urb->pipe = pipe;
urb->transfer_buffer = transfer_buffer;
urb->transfer_buffer_length = buffer_length;
urb->complete = complete;
urb->context = context;
if (dev->speed == USB_SPEED_HIGH)
urb->interval = 1 << (interval - 1);
else
urb->interval = interval;
urb->start_frame = -1;
}
extern void usb_init_urb(struct urb *urb);
extern struct urb *usb_alloc_urb(int iso_packets, int mem_flags);
extern void usb_free_urb(struct urb *urb);
#define usb_put_urb usb_free_urb
extern struct urb *usb_get_urb(struct urb *urb);
extern int usb_submit_urb(struct urb *urb, int mem_flags);
extern int usb_unlink_urb(struct urb *urb);
extern void usb_kill_urb(struct urb *urb);
#define HAVE_USB_BUFFERS
void *usb_buffer_alloc (struct usb_device *dev, size_t size,
int mem_flags, dma_addr_t *dma);
void usb_buffer_free (struct usb_device *dev, size_t size,
void *addr, dma_addr_t dma);
#if 0
struct urb *usb_buffer_map (struct urb *urb);
void usb_buffer_dmasync (struct urb *urb);
void usb_buffer_unmap (struct urb *urb);
#endif
struct scatterlist;
int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int nents);
#if 0
void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int n_hw_ents);
#endif
void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int n_hw_ents);
/*-------------------------------------------------------------------*
* SYNCHRONOUS CALL SUPPORT *
*-------------------------------------------------------------------*/
extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
__u8 request, __u8 requesttype, __u16 value, __u16 index,
void *data, __u16 size, int timeout);
extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
void *data, int len, int *actual_length,
int timeout);
/* selective suspend/resume */
extern int usb_suspend_device(struct usb_device *dev, pm_message_t message);
extern int usb_resume_device(struct usb_device *dev);
/* wrappers around usb_control_msg() for the most common standard requests */
extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
unsigned char descindex, void *buf, int size);
extern int usb_get_status(struct usb_device *dev,
int type, int target, void *data);
extern int usb_get_string(struct usb_device *dev,
unsigned short langid, unsigned char index, void *buf, int size);
extern int usb_string(struct usb_device *dev, int index,
char *buf, size_t size);
/* wrappers that also update important state inside usbcore */
extern int usb_clear_halt(struct usb_device *dev, int pipe);
extern int usb_reset_configuration(struct usb_device *dev);
extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
/*
* timeouts, in milliseconds, used for sending/receiving control messages
* they typically complete within a few frames (msec) after they're issued
* USB identifies 5 second timeouts, maybe more in a few cases, and a few
* slow devices (like some MGE Ellipse UPSes) actually push that limit.
*/
#define USB_CTRL_GET_TIMEOUT 5000
#define USB_CTRL_SET_TIMEOUT 5000
/**
* struct usb_sg_request - support for scatter/gather I/O
* @status: zero indicates success, else negative errno
* @bytes: counts bytes transferred.
*
* These requests are initialized using usb_sg_init(), and then are used
* as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
* members of the request object aren't for driver access.
*
* The status and bytecount values are valid only after usb_sg_wait()
* returns. If the status is zero, then the bytecount matches the total
* from the request.
*
* After an error completion, drivers may need to clear a halt condition
* on the endpoint.
*/
struct usb_sg_request {
int status;
size_t bytes;
/*
* members below are private to usbcore,
* and are not provided for driver access!
*/
spinlock_t lock;
struct usb_device *dev;
int pipe;
struct scatterlist *sg;
int nents;
int entries;
struct urb **urbs;
int count;
struct completion complete;
};
int usb_sg_init (
struct usb_sg_request *io,
struct usb_device *dev,
unsigned pipe,
unsigned period,
struct scatterlist *sg,
int nents,
size_t length,
int mem_flags
);
void usb_sg_cancel (struct usb_sg_request *io);
void usb_sg_wait (struct usb_sg_request *io);
/* -------------------------------------------------------------------------- */
/*
* For various legacy reasons, Linux has a small cookie that's paired with
* a struct usb_device to identify an endpoint queue. Queue characteristics
* are defined by the endpoint's descriptor. This cookie is called a "pipe",
* an unsigned int encoded as:
*
* - direction: bit 7 (0 = Host-to-Device [Out],
* 1 = Device-to-Host [In] ...
* like endpoint bEndpointAddress)
* - device address: bits 8-14 ... bit positions known to uhci-hcd
* - endpoint: bits 15-18 ... bit positions known to uhci-hcd
* - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
* 10 = control, 11 = bulk)
*
* Given the device address and endpoint descriptor, pipes are redundant.
*/
/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
/* (yet ... they're the values used by usbfs) */
#define PIPE_ISOCHRONOUS 0
#define PIPE_INTERRUPT 1
#define PIPE_CONTROL 2
#define PIPE_BULK 3
#define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
#define usb_pipeout(pipe) (!usb_pipein(pipe))
#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
#define usb_pipetype(pipe) (((pipe) >> 30) & 3)
#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
#define usb_settoggle(dev, ep, out, bit) ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | ((bit) << (ep)))
static inline unsigned int __create_pipe(struct usb_device *dev, unsigned int endpoint)
{
return (dev->devnum << 8) | (endpoint << 15);
}
/* Create various pipes... */
#define usb_sndctrlpipe(dev,endpoint) ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
#define usb_rcvctrlpipe(dev,endpoint) ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
#define usb_sndisocpipe(dev,endpoint) ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
#define usb_rcvisocpipe(dev,endpoint) ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
#define usb_sndbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
#define usb_rcvbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
#define usb_sndintpipe(dev,endpoint) ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
#define usb_rcvintpipe(dev,endpoint) ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
/*-------------------------------------------------------------------------*/
static inline __u16
usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
{
struct usb_host_endpoint *ep;
unsigned epnum = usb_pipeendpoint(pipe);
if (is_out) {
WARN_ON(usb_pipein(pipe));
ep = udev->ep_out[epnum];
} else {
WARN_ON(usb_pipeout(pipe));
ep = udev->ep_in[epnum];
}
if (!ep)
return 0;
/* NOTE: only 0x07ff bits are for packet size... */
return le16_to_cpu(ep->desc.wMaxPacketSize);
}
/* -------------------------------------------------------------------------- */
#ifdef DEBUG
#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , __FILE__ , ## arg)
#else
#define dbg(format, arg...) do {} while (0)
#endif
#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , __FILE__ , ## arg)
#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , __FILE__ , ## arg)
#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , __FILE__ , ## arg)
#endif /* __KERNEL__ */
#endif