/* Copyright 2000-2005 The Apache Software Foundation or its licensors, as * applicable. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include /* * define this to get debug messages * #define QUEUE_DEBUG */ struct switch_apr_queue_t { void **data; unsigned int nelts; /**< # elements */ unsigned int in; /**< next empty location */ unsigned int out; /**< next filled location */ unsigned int bounds;/**< max size of queue */ unsigned int full_waiters; unsigned int empty_waiters; fspr_thread_mutex_t *one_big_mutex; fspr_thread_cond_t *not_empty; fspr_thread_cond_t *not_full; int terminated; }; typedef struct switch_apr_queue_t switch_apr_queue_t; #ifdef QUEUE_DEBUG static void Q_DBG(char*msg, switch_apr_queue_t *q) { fprintf(stderr, "%ld\t#%d in %d out %d\t%s\n", apr_os_thread_current(), q->nelts, q->in, q->out, msg ); } #else #define Q_DBG(x,y) #endif /** * Detects when the switch_apr_queue_t is full. This utility function is expected * to be called from within critical sections, and is not threadsafe. */ #define apr_queue_full(queue) ((queue)->nelts == (queue)->bounds) /** * Detects when the switch_apr_queue_t is empty. This utility function is expected * to be called from within critical sections, and is not threadsafe. */ #define apr_queue_empty(queue) ((queue)->nelts == 0) /** * Callback routine that is called to destroy this * switch_apr_queue_t when its pool is destroyed. */ static fspr_status_t queue_destroy(void *data) { switch_apr_queue_t *queue = data; /* Ignore errors here, we can't do anything about them anyway. */ fspr_thread_cond_destroy(queue->not_empty); fspr_thread_cond_destroy(queue->not_full); fspr_thread_mutex_destroy(queue->one_big_mutex); return APR_SUCCESS; } /** * Initialize the switch_apr_queue_t. */ fspr_status_t switch_apr_queue_create(switch_apr_queue_t **q, unsigned int queue_capacity, fspr_pool_t *a) { fspr_status_t rv; switch_apr_queue_t *queue; queue = fspr_palloc(a, sizeof(switch_apr_queue_t)); *q = queue; /* nested doesn't work ;( */ rv = fspr_thread_mutex_create(&queue->one_big_mutex, APR_THREAD_MUTEX_UNNESTED, a); if (rv != APR_SUCCESS) { return rv; } rv = fspr_thread_cond_create(&queue->not_empty, a); if (rv != APR_SUCCESS) { return rv; } rv = fspr_thread_cond_create(&queue->not_full, a); if (rv != APR_SUCCESS) { return rv; } /* Set all the data in the queue to NULL */ queue->data = fspr_palloc(a, queue_capacity * sizeof(void*)); if (!queue->data) return APR_ENOMEM; memset(queue->data, 0, queue_capacity * sizeof(void*)); queue->bounds = queue_capacity; queue->nelts = 0; queue->in = 0; queue->out = 0; queue->terminated = 0; queue->full_waiters = 0; queue->empty_waiters = 0; fspr_pool_cleanup_register(a, queue, queue_destroy, fspr_pool_cleanup_null); return APR_SUCCESS; } /** * Push new data onto the queue. Blocks if the queue is full. Once * the push operation has completed, it signals other threads waiting * in apr_queue_pop() that they may continue consuming sockets. */ fspr_status_t switch_apr_queue_push(switch_apr_queue_t *queue, void *data) { fspr_status_t rv; if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } rv = fspr_thread_mutex_lock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } if (apr_queue_full(queue)) { if (!queue->terminated) { queue->full_waiters++; rv = fspr_thread_cond_wait(queue->not_full, queue->one_big_mutex); queue->full_waiters--; if (rv != APR_SUCCESS) { fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } } /* If we wake up and it's still empty, then we were interrupted */ if (apr_queue_full(queue)) { Q_DBG("queue full (intr)", queue); rv = fspr_thread_mutex_unlock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } else { return APR_EINTR; } } } queue->data[queue->in] = data; queue->in = (queue->in + 1) % queue->bounds; queue->nelts++; if (queue->empty_waiters) { Q_DBG("sig !empty", queue); rv = fspr_thread_cond_signal(queue->not_empty); if (rv != APR_SUCCESS) { fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } } rv = fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } /** * Push new data onto the queue. Blocks if the queue is full. Once * the push operation has completed, it signals other threads waiting * in apr_queue_pop() that they may continue consuming sockets. */ fspr_status_t switch_apr_queue_trypush(switch_apr_queue_t *queue, void *data) { fspr_status_t rv; if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } rv = fspr_thread_mutex_lock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } if (apr_queue_full(queue)) { fspr_thread_mutex_unlock(queue->one_big_mutex); return APR_EAGAIN; } queue->data[queue->in] = data; queue->in = (queue->in + 1) % queue->bounds; queue->nelts++; if (queue->empty_waiters) { Q_DBG("sig !empty", queue); rv = fspr_thread_cond_signal(queue->not_empty); if (rv != APR_SUCCESS) { fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } } rv = fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } /** * not thread safe */ unsigned int switch_apr_queue_size(switch_apr_queue_t *queue) { return queue->nelts; } /** * Retrieves the next item from the queue. If there are no * items available, it will block until one becomes available. * Once retrieved, the item is placed into the address specified by * 'data'. */ fspr_status_t switch_apr_queue_pop(switch_apr_queue_t *queue, void **data) { fspr_status_t rv; if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } rv = fspr_thread_mutex_lock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } /* Keep waiting until we wake up and find that the queue is not empty. */ if (apr_queue_empty(queue)) { if (!queue->terminated) { queue->empty_waiters++; rv = fspr_thread_cond_wait(queue->not_empty, queue->one_big_mutex); queue->empty_waiters--; if (rv != APR_SUCCESS) { fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } } /* If we wake up and it's still empty, then we were interrupted */ if (apr_queue_empty(queue)) { Q_DBG("queue empty (intr)", queue); rv = fspr_thread_mutex_unlock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } else { return APR_EINTR; } } } *data = queue->data[queue->out]; queue->nelts--; queue->out = (queue->out + 1) % queue->bounds; if (queue->full_waiters) { Q_DBG("signal !full", queue); rv = fspr_thread_cond_signal(queue->not_full); if (rv != APR_SUCCESS) { fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } } rv = fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } /** * Retrieves the next item from the queue. If there are no * items available, it will block until one becomes available, or * until timeout is elapsed. Once retrieved, the item is placed into * the address specified by'data'. */ fspr_status_t switch_apr_queue_pop_timeout(switch_apr_queue_t *queue, void **data, fspr_interval_time_t timeout) { fspr_status_t rv; if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } rv = fspr_thread_mutex_lock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } /* Keep waiting until we wake up and find that the queue is not empty. */ if (apr_queue_empty(queue)) { if (!queue->terminated) { queue->empty_waiters++; rv = fspr_thread_cond_timedwait(queue->not_empty, queue->one_big_mutex, timeout); queue->empty_waiters--; /* In the event of a timemout, APR_TIMEUP will be returned */ if (rv != APR_SUCCESS) { fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } } /* If we wake up and it's still empty, then we were interrupted */ if (apr_queue_empty(queue)) { Q_DBG("queue empty (intr)", queue); rv = fspr_thread_mutex_unlock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } else { return APR_EINTR; } } } *data = queue->data[queue->out]; queue->nelts--; queue->out = (queue->out + 1) % queue->bounds; if (queue->full_waiters) { Q_DBG("signal !full", queue); rv = fspr_thread_cond_signal(queue->not_full); if (rv != APR_SUCCESS) { fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } } rv = fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } /** * Retrieves the next item from the queue. If there are no * items available, return APR_EAGAIN. Once retrieved, * the item is placed into the address specified by 'data'. */ fspr_status_t switch_apr_queue_trypop(switch_apr_queue_t *queue, void **data) { fspr_status_t rv; if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } rv = fspr_thread_mutex_lock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } if (apr_queue_empty(queue)) { fspr_thread_mutex_unlock(queue->one_big_mutex); return APR_EAGAIN; } *data = queue->data[queue->out]; queue->nelts--; queue->out = (queue->out + 1) % queue->bounds; if (queue->full_waiters) { Q_DBG("signal !full", queue); rv = fspr_thread_cond_signal(queue->not_full); if (rv != APR_SUCCESS) { fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } } rv = fspr_thread_mutex_unlock(queue->one_big_mutex); return rv; } fspr_status_t switch_apr_queue_interrupt_all(switch_apr_queue_t *queue) { fspr_status_t rv; Q_DBG("intr all", queue); if ((rv = fspr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } fspr_thread_cond_broadcast(queue->not_empty); fspr_thread_cond_broadcast(queue->not_full); if ((rv = fspr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } return APR_SUCCESS; } fspr_status_t switch_apr_queue_term(switch_apr_queue_t *queue) { fspr_status_t rv; if ((rv = fspr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } /* we must hold one_big_mutex when setting this... otherwise, * we could end up setting it and waking everybody up just after a * would-be popper checks it but right before they block */ queue->terminated = 1; if ((rv = fspr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } return switch_apr_queue_interrupt_all(queue); }