freeswitch/libs/apr-util/crypto/apr_md4.c
Michael Jerris 3b35430557 add apr-util 1.2.8 to in tree libs
git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3734 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-12-19 20:04:21 +00:00

405 lines
12 KiB
C

/* Copyright 2001-2005 The Apache Software Foundation or its licensors, as
* applicable.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This is derived from material copyright RSA Data Security, Inc.
* Their notice is reproduced below in its entirety.
*
* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
* rights reserved.
*
* License to copy and use this software is granted provided that it
* is identified as the "RSA Data Security, Inc. MD4 Message-Digest
* Algorithm" in all material mentioning or referencing this software
* or this function.
*
* License is also granted to make and use derivative works provided
* that such works are identified as "derived from the RSA Data
* Security, Inc. MD4 Message-Digest Algorithm" in all material
* mentioning or referencing the derived work.
*
* RSA Data Security, Inc. makes no representations concerning either
* the merchantability of this software or the suitability of this
* software for any particular purpose. It is provided "as is"
* without express or implied warranty of any kind.
*
* These notices must be retained in any copies of any part of this
* documentation and/or software.
*/
#include "apr_strings.h"
#include "apr_md4.h"
#include "apr_lib.h"
#if APR_HAVE_STRING_H
#include <string.h>
#endif
#if APR_HAVE_UNISTD_H
#include <unistd.h>
#endif
/* Constants for MD4Transform routine.
*/
#define S11 3
#define S12 7
#define S13 11
#define S14 19
#define S21 3
#define S22 5
#define S23 9
#define S24 13
#define S31 3
#define S32 9
#define S33 11
#define S34 15
static void MD4Transform(apr_uint32_t state[4], const unsigned char block[64]);
static void Encode(unsigned char *output, const apr_uint32_t *input,
unsigned int len);
static void Decode(apr_uint32_t *output, const unsigned char *input,
unsigned int len);
static unsigned char PADDING[64] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#if APR_CHARSET_EBCDIC
static apr_xlate_t *xlate_ebcdic_to_ascii; /* used in apr_md4_encode() */
#endif
/* F, G and I are basic MD4 functions.
*/
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
/* ROTATE_LEFT rotates x left n bits.
*/
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
/* FF, GG and HH are transformations for rounds 1, 2 and 3 */
/* Rotation is separate from addition to prevent recomputation */
#define FF(a, b, c, d, x, s) { \
(a) += F ((b), (c), (d)) + (x); \
(a) = ROTATE_LEFT ((a), (s)); \
}
#define GG(a, b, c, d, x, s) { \
(a) += G ((b), (c), (d)) + (x) + (apr_uint32_t)0x5a827999; \
(a) = ROTATE_LEFT ((a), (s)); \
}
#define HH(a, b, c, d, x, s) { \
(a) += H ((b), (c), (d)) + (x) + (apr_uint32_t)0x6ed9eba1; \
(a) = ROTATE_LEFT ((a), (s)); \
}
/* MD4 initialization. Begins an MD4 operation, writing a new context.
*/
APU_DECLARE(apr_status_t) apr_md4_init(apr_md4_ctx_t *context)
{
context->count[0] = context->count[1] = 0;
/* Load magic initialization constants. */
context->state[0] = 0x67452301;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;
#if APR_HAS_XLATE
context->xlate = NULL;
#endif
return APR_SUCCESS;
}
#if APR_HAS_XLATE
/* MD4 translation setup. Provides the APR translation handle
* to be used for translating the content before calculating the
* digest.
*/
APU_DECLARE(apr_status_t) apr_md4_set_xlate(apr_md4_ctx_t *context,
apr_xlate_t *xlate)
{
apr_status_t rv;
int is_sb;
/* TODO: remove the single-byte-only restriction from this code
*/
rv = apr_xlate_sb_get(xlate, &is_sb);
if (rv != APR_SUCCESS) {
return rv;
}
if (!is_sb) {
return APR_EINVAL;
}
context->xlate = xlate;
return APR_SUCCESS;
}
#endif /* APR_HAS_XLATE */
/* MD4 block update operation. Continues an MD4 message-digest
* operation, processing another message block, and updating the
* context.
*/
APU_DECLARE(apr_status_t) apr_md4_update(apr_md4_ctx_t *context,
const unsigned char *input,
apr_size_t inputLen)
{
unsigned int i, idx, partLen;
#if APR_HAS_XLATE
apr_size_t inbytes_left, outbytes_left;
#endif
/* Compute number of bytes mod 64 */
idx = (unsigned int)((context->count[0] >> 3) & 0x3F);
/* Update number of bits */
if ((context->count[0] += ((apr_uint32_t)inputLen << 3))
< ((apr_uint32_t)inputLen << 3))
context->count[1]++;
context->count[1] += (apr_uint32_t)inputLen >> 29;
partLen = 64 - idx;
/* Transform as many times as possible. */
#if !APR_HAS_XLATE
if (inputLen >= partLen) {
memcpy(&context->buffer[idx], input, partLen);
MD4Transform(context->state, context->buffer);
for (i = partLen; i + 63 < inputLen; i += 64)
MD4Transform(context->state, &input[i]);
idx = 0;
}
else
i = 0;
/* Buffer remaining input */
memcpy(&context->buffer[idx], &input[i], inputLen - i);
#else /*APR_HAS_XLATE*/
if (inputLen >= partLen) {
if (context->xlate) {
inbytes_left = outbytes_left = partLen;
apr_xlate_conv_buffer(context->xlate, (const char *)input,
&inbytes_left,
(char *)&context->buffer[idx],
&outbytes_left);
}
else {
memcpy(&context->buffer[idx], input, partLen);
}
MD4Transform(context->state, context->buffer);
for (i = partLen; i + 63 < inputLen; i += 64) {
if (context->xlate) {
unsigned char inp_tmp[64];
inbytes_left = outbytes_left = 64;
apr_xlate_conv_buffer(context->xlate, (const char *)&input[i],
&inbytes_left,
(char *)inp_tmp, &outbytes_left);
MD4Transform(context->state, inp_tmp);
}
else {
MD4Transform(context->state, &input[i]);
}
}
idx = 0;
}
else
i = 0;
/* Buffer remaining input */
if (context->xlate) {
inbytes_left = outbytes_left = inputLen - i;
apr_xlate_conv_buffer(context->xlate, (const char *)&input[i],
&inbytes_left, (char *)&context->buffer[idx],
&outbytes_left);
}
else {
memcpy(&context->buffer[idx], &input[i], inputLen - i);
}
#endif /*APR_HAS_XLATE*/
return APR_SUCCESS;
}
/* MD4 finalization. Ends an MD4 message-digest operation, writing the
* the message digest and zeroizing the context.
*/
APU_DECLARE(apr_status_t) apr_md4_final(
unsigned char digest[APR_MD4_DIGESTSIZE],
apr_md4_ctx_t *context)
{
unsigned char bits[8];
unsigned int idx, padLen;
/* Save number of bits */
Encode(bits, context->count, 8);
#if APR_HAS_XLATE
/* apr_md4_update() should not translate for this final round. */
context->xlate = NULL;
#endif /*APR_HAS_XLATE*/
/* Pad out to 56 mod 64. */
idx = (unsigned int) ((context->count[0] >> 3) & 0x3f);
padLen = (idx < 56) ? (56 - idx) : (120 - idx);
apr_md4_update(context, PADDING, padLen);
/* Append length (before padding) */
apr_md4_update(context, bits, 8);
/* Store state in digest */
Encode(digest, context->state, APR_MD4_DIGESTSIZE);
/* Zeroize sensitive information. */
memset(context, 0, sizeof(*context));
return APR_SUCCESS;
}
/* MD4 computation in one step (init, update, final)
*/
APU_DECLARE(apr_status_t) apr_md4(unsigned char digest[APR_MD4_DIGESTSIZE],
const unsigned char *input,
apr_size_t inputLen)
{
apr_md4_ctx_t ctx;
apr_status_t rv;
apr_md4_init(&ctx);
if ((rv = apr_md4_update(&ctx, input, inputLen)) != APR_SUCCESS)
return rv;
return apr_md4_final(digest, &ctx);
}
/* MD4 basic transformation. Transforms state based on block. */
static void MD4Transform(apr_uint32_t state[4], const unsigned char block[64])
{
apr_uint32_t a = state[0], b = state[1], c = state[2], d = state[3],
x[APR_MD4_DIGESTSIZE];
Decode(x, block, 64);
/* Round 1 */
FF (a, b, c, d, x[ 0], S11); /* 1 */
FF (d, a, b, c, x[ 1], S12); /* 2 */
FF (c, d, a, b, x[ 2], S13); /* 3 */
FF (b, c, d, a, x[ 3], S14); /* 4 */
FF (a, b, c, d, x[ 4], S11); /* 5 */
FF (d, a, b, c, x[ 5], S12); /* 6 */
FF (c, d, a, b, x[ 6], S13); /* 7 */
FF (b, c, d, a, x[ 7], S14); /* 8 */
FF (a, b, c, d, x[ 8], S11); /* 9 */
FF (d, a, b, c, x[ 9], S12); /* 10 */
FF (c, d, a, b, x[10], S13); /* 11 */
FF (b, c, d, a, x[11], S14); /* 12 */
FF (a, b, c, d, x[12], S11); /* 13 */
FF (d, a, b, c, x[13], S12); /* 14 */
FF (c, d, a, b, x[14], S13); /* 15 */
FF (b, c, d, a, x[15], S14); /* 16 */
/* Round 2 */
GG (a, b, c, d, x[ 0], S21); /* 17 */
GG (d, a, b, c, x[ 4], S22); /* 18 */
GG (c, d, a, b, x[ 8], S23); /* 19 */
GG (b, c, d, a, x[12], S24); /* 20 */
GG (a, b, c, d, x[ 1], S21); /* 21 */
GG (d, a, b, c, x[ 5], S22); /* 22 */
GG (c, d, a, b, x[ 9], S23); /* 23 */
GG (b, c, d, a, x[13], S24); /* 24 */
GG (a, b, c, d, x[ 2], S21); /* 25 */
GG (d, a, b, c, x[ 6], S22); /* 26 */
GG (c, d, a, b, x[10], S23); /* 27 */
GG (b, c, d, a, x[14], S24); /* 28 */
GG (a, b, c, d, x[ 3], S21); /* 29 */
GG (d, a, b, c, x[ 7], S22); /* 30 */
GG (c, d, a, b, x[11], S23); /* 31 */
GG (b, c, d, a, x[15], S24); /* 32 */
/* Round 3 */
HH (a, b, c, d, x[ 0], S31); /* 33 */
HH (d, a, b, c, x[ 8], S32); /* 34 */
HH (c, d, a, b, x[ 4], S33); /* 35 */
HH (b, c, d, a, x[12], S34); /* 36 */
HH (a, b, c, d, x[ 2], S31); /* 37 */
HH (d, a, b, c, x[10], S32); /* 38 */
HH (c, d, a, b, x[ 6], S33); /* 39 */
HH (b, c, d, a, x[14], S34); /* 40 */
HH (a, b, c, d, x[ 1], S31); /* 41 */
HH (d, a, b, c, x[ 9], S32); /* 42 */
HH (c, d, a, b, x[ 5], S33); /* 43 */
HH (b, c, d, a, x[13], S34); /* 44 */
HH (a, b, c, d, x[ 3], S31); /* 45 */
HH (d, a, b, c, x[11], S32); /* 46 */
HH (c, d, a, b, x[ 7], S33); /* 47 */
HH (b, c, d, a, x[15], S34); /* 48 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
/* Zeroize sensitive information. */
memset(x, 0, sizeof(x));
}
/* Encodes input (apr_uint32_t) into output (unsigned char). Assumes len is
* a multiple of 4.
*/
static void Encode(unsigned char *output, const apr_uint32_t *input,
unsigned int len)
{
unsigned int i, j;
apr_uint32_t k;
for (i = 0, j = 0; j < len; i++, j += 4) {
k = input[i];
output[j] = (unsigned char)(k & 0xff);
output[j + 1] = (unsigned char)((k >> 8) & 0xff);
output[j + 2] = (unsigned char)((k >> 16) & 0xff);
output[j + 3] = (unsigned char)((k >> 24) & 0xff);
}
}
/* Decodes input (unsigned char) into output (apr_uint32_t). Assumes len is
* a multiple of 4.
*/
static void Decode(apr_uint32_t *output, const unsigned char *input,
unsigned int len)
{
unsigned int i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = ((apr_uint32_t)input[j]) |
(((apr_uint32_t)input[j + 1]) << 8) |
(((apr_uint32_t)input[j + 2]) << 16) |
(((apr_uint32_t)input[j + 3]) << 24);
}
#if APR_CHARSET_EBCDIC
APU_DECLARE(apr_status_t) apr_MD4InitEBCDIC(apr_xlate_t *xlate)
{
xlate_ebcdic_to_ascii = xlate;
return APR_SUCCESS;
}
#endif