freeswitch/libs/spandsp/tests/udptl.c
2011-12-06 01:00:22 +08:00

604 lines
19 KiB
C

//#define UDPTL_DEBUG
/*
* SpanDSP - a series of DSP components for telephony
*
* udptl.c - An implementation of the UDPTL protocol defined in T.38,
* less the packet exchange part
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2005 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <inttypes.h>
#include <memory.h>
#include "udptl.h"
#define FALSE 0
#define TRUE (!FALSE)
static int decode_length(const uint8_t *buf, int limit, int *len, int *pvalue)
{
if (*len >= limit)
return -1;
if ((buf[*len] & 0x80) == 0)
{
*pvalue = buf[(*len)++];
return 0;
}
if ((buf[*len] & 0x40) == 0)
{
if (*len >= limit - 1)
return -1;
*pvalue = (buf[(*len)++] & 0x3F) << 8;
*pvalue |= buf[(*len)++];
return 0;
}
*pvalue = (buf[(*len)++] & 0x3F) << 14;
/* Indicate we have a fragment */
return 1;
}
/*- End of function --------------------------------------------------------*/
static int decode_open_type(const uint8_t *buf, int limit, int *len, const uint8_t **p_object, int *p_num_octets)
{
int octet_cnt;
int octet_idx;
int stat;
const uint8_t **pbuf;
for (octet_idx = 0, *p_num_octets = 0; ; octet_idx += octet_cnt)
{
if ((stat = decode_length(buf, limit, len, &octet_cnt)) < 0)
return -1;
if (octet_cnt > 0)
{
*p_num_octets += octet_cnt;
pbuf = &p_object[octet_idx];
/* Make sure the buffer contains at least the number of bits requested */
if ((*len + octet_cnt) > limit)
return -1;
*pbuf = &buf[*len];
*len += octet_cnt;
}
if (stat == 0)
break;
}
return 0;
}
/*- End of function --------------------------------------------------------*/
static int encode_length(uint8_t *buf, int *len, int value)
{
int multiplier;
if (value < 0x80)
{
/* 1 octet */
buf[(*len)++] = value;
return value;
}
if (value < 0x4000)
{
/* 2 octets */
/* Set the first bit of the first octet */
buf[(*len)++] = ((0x8000 | value) >> 8) & 0xFF;
buf[(*len)++] = value & 0xFF;
return value;
}
/* Fragmentation */
multiplier = (value < 0x10000) ? (value >> 14) : 4;
/* Set the first 2 bits of the octet */
buf[(*len)++] = 0xC0 | multiplier;
return multiplier << 14;
}
/*- End of function --------------------------------------------------------*/
static int encode_open_type(uint8_t *buf, int *len, const uint8_t *data, int num_octets)
{
int enclen;
int octet_idx;
uint8_t zero_byte;
/* If open type is of zero length, add a single zero byte (10.1) */
if (num_octets == 0)
{
zero_byte = 0;
data = &zero_byte;
num_octets = 1;
}
/* Encode the open type */
for (octet_idx = 0; ; num_octets -= enclen, octet_idx += enclen)
{
if ((enclen = encode_length(buf, len, num_octets)) < 0)
return -1;
if (enclen > 0)
{
memcpy(&buf[*len], &data[octet_idx], enclen);
*len += enclen;
}
if (enclen >= num_octets)
break;
}
return 0;
}
/*- End of function --------------------------------------------------------*/
int udptl_rx_packet(udptl_state_t *s, const uint8_t buf[], int len)
{
int stat;
int stat2;
int i;
int j;
int k;
int l;
int m;
int x;
int limit;
int which;
int ptr;
int count;
int total_count;
int seq_no;
const uint8_t *msg;
const uint8_t *data;
int msg_len;
int repaired[16];
const uint8_t *bufs[16];
int lengths[16];
int span;
int entries;
ptr = 0;
/* Decode seq_number */
if (ptr + 2 > len)
return -1;
seq_no = (buf[0] << 8) | buf[1];
ptr += 2;
/* Break out the primary packet */
if ((stat = decode_open_type(buf, len, &ptr, &msg, &msg_len)) != 0)
return -1;
/* Decode error_recovery */
if (ptr + 1 > len)
return -1;
/* Our buffers cannot tolerate overlength packets */
if (msg_len > LOCAL_FAX_MAX_DATAGRAM)
return -1;
/* Update any missed slots in the buffer */
for (i = s->rx_seq_no; seq_no > i; i++)
{
x = i & UDPTL_BUF_MASK;
s->rx[x].buf_len = -1;
s->rx[x].fec_len[0] = 0;
s->rx[x].fec_span = 0;
s->rx[x].fec_entries = 0;
}
/* Save the new packet. Pure redundancy mode won't use this, but some systems will switch
into FEC mode after sending some redundant packets. */
x = seq_no & UDPTL_BUF_MASK;
memcpy(s->rx[x].buf, msg, msg_len);
s->rx[x].buf_len = msg_len;
s->rx[x].fec_len[0] = 0;
s->rx[x].fec_span = 0;
s->rx[x].fec_entries = 0;
if ((buf[ptr++] & 0x80) == 0)
{
/* Secondary packet mode for error recovery */
/* We might have the packet we want, but we need to check through
the redundant stuff, and verify the integrity of the UDPTL.
This greatly reduces our chances of accepting garbage. */
total_count = 0;
do
{
if ((stat2 = decode_length(buf, len, &ptr, &count)) < 0)
return -1;
for (i = 0; i < count; i++)
{
if ((stat = decode_open_type(buf, len, &ptr, &bufs[total_count + i], &lengths[total_count + i])) != 0)
return -1;
}
total_count += count;
}
while (stat2 > 0);
/* We should now be exactly at the end of the packet. If not, this is a fault. */
if (ptr != len)
return -1;
if (seq_no > s->rx_seq_no)
{
/* We received a later packet than we expected, so we need to check if we can fill in the gap from the
secondary packets. */
/* Step through in reverse order, so we go oldest to newest */
for (i = total_count; i > 0; i--)
{
if (seq_no - i >= s->rx_seq_no)
{
/* This one wasn't seen before */
/* Process the secondary packet */
#if defined(UDPTL_DEBUG)
fprintf(stderr, "Secondary %d, len %d\n", seq_no - i, lengths[i - 1]);
#endif
/* Save the new packet. Redundancy mode won't use this, but some systems will switch into
FEC mode after sending some redundant packets, and this may then be important. */
x = (seq_no - i) & UDPTL_BUF_MASK;
memcpy(s->rx[x].buf, bufs[i - 1], lengths[i - 1]);
s->rx[x].buf_len = lengths[i - 1];
s->rx[x].fec_len[0] = 0;
s->rx[x].fec_span = 0;
s->rx[x].fec_entries = 0;
if (s->rx_packet_handler(s->user_data, bufs[i - 1], lengths[i - 1], seq_no - i) < 0)
fprintf(stderr, "Bad IFP\n");
}
}
}
}
else
{
/* FEC mode for error recovery */
/* Decode the FEC packets */
/* The span is defined as an unconstrained integer, but will never be more
than a small value. */
if (ptr + 2 > len)
return -1;
if (buf[ptr++] != 1)
return -1;
span = buf[ptr++];
x = seq_no & UDPTL_BUF_MASK;
s->rx[x].fec_span = span;
memset(repaired, 0, sizeof(repaired));
repaired[x] = TRUE;
/* The number of entries is defined as a length, but will only ever be a small
value. Treat it as such. */
if (ptr + 1 > len)
return -1;
entries = buf[ptr++];
s->rx[x].fec_entries = entries;
/* Decode the elements */
for (i = 0; i < entries; i++)
{
if ((stat = decode_open_type(buf, len, &ptr, &data, &s->rx[x].fec_len[i])) != 0)
return -1;
if (s->rx[x].fec_len[i] > LOCAL_FAX_MAX_DATAGRAM)
return -1;
/* Save the new FEC data */
memcpy(s->rx[x].fec[i], data, s->rx[x].fec_len[i]);
#if 0
fprintf(stderr, "FEC: ");
for (j = 0; j < s->rx[x].fec_len[i]; j++)
fprintf(stderr, "%02X ", data[j]);
fprintf(stderr, "\n");
#endif
}
/* We should now be exactly at the end of the packet. If not, this is a fault. */
if (ptr != len)
return -1;
/* See if we can reconstruct anything which is missing */
/* TODO: this does not comprehensively hunt back and repair everything that is possible */
for (l = x; l != ((x - (16 - span*entries)) & UDPTL_BUF_MASK); l = (l - 1) & UDPTL_BUF_MASK)
{
if (s->rx[l].fec_len[0] <= 0)
continue;
for (m = 0; m < s->rx[l].fec_entries; m++)
{
limit = (l + m) & UDPTL_BUF_MASK;
for (which = -1, k = (limit - s->rx[l].fec_span*s->rx[l].fec_entries) & UDPTL_BUF_MASK;
k != limit;
k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK)
{
if (s->rx[k].buf_len <= 0)
which = (which == -1) ? k : -2;
}
if (which >= 0)
{
/* Repairable */
for (j = 0; j < s->rx[l].fec_len[m]; j++)
{
s->rx[which].buf[j] = s->rx[l].fec[m][j];
for (k = (limit - s->rx[l].fec_span*s->rx[l].fec_entries) & UDPTL_BUF_MASK;
k != limit;
k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK)
{
s->rx[which].buf[j] ^= (s->rx[k].buf_len > j) ? s->rx[k].buf[j] : 0;
}
}
s->rx[which].buf_len = s->rx[l].fec_len[m];
repaired[which] = TRUE;
}
}
}
/* Now play any new packets forwards in time */
for (l = (x + 1) & UDPTL_BUF_MASK, j = seq_no - UDPTL_BUF_MASK; l != x; l = (l + 1) & UDPTL_BUF_MASK, j++)
{
if (repaired[l])
{
#if defined(UDPTL_DEBUG)
fprintf(stderr, "Fixed packet %d, len %d\n", j, l);
#endif
if (s->rx_packet_handler(s->user_data, s->rx[l].buf, s->rx[l].buf_len, j) < 0)
fprintf(stderr, "Bad IFP\n");
}
}
}
/* If packets are received out of sequence, we may have already processed this packet
from the error recovery information in a packet already received. */
if (seq_no >= s->rx_seq_no)
{
/* Decode the primary packet */
#if defined(UDPTL_DEBUG)
fprintf(stderr, "Primary packet %d, len %d\n", seq_no, msg_len);
#endif
if (s->rx_packet_handler(s->user_data, msg, msg_len, seq_no) < 0)
fprintf(stderr, "Bad IFP\n");
}
s->rx_seq_no = (seq_no + 1) & 0xFFFF;
return 0;
}
/*- End of function --------------------------------------------------------*/
int udptl_build_packet(udptl_state_t *s, uint8_t buf[], const uint8_t msg[], int msg_len)
{
uint8_t fec[LOCAL_FAX_MAX_DATAGRAM];
int i;
int j;
int seq;
int entry;
int entries;
int span;
int m;
int len;
int limit;
int high_tide;
/* UDPTL cannot cope with zero length messages, and our buffering for redundancy limits their
maximum length. */
if (msg_len < 1 || msg_len > LOCAL_FAX_MAX_DATAGRAM)
return -1;
seq = s->tx_seq_no & 0xFFFF;
/* Map the sequence number to an entry in the circular buffer */
entry = seq & UDPTL_BUF_MASK;
/* We save the message in a circular buffer, for generating FEC or
redundancy sets later on. */
s->tx[entry].buf_len = msg_len;
memcpy(s->tx[entry].buf, msg, msg_len);
/* Build the UDPTL packet */
len = 0;
/* Encode the sequence number */
buf[len++] = (seq >> 8) & 0xFF;
buf[len++] = seq & 0xFF;
/* Encode the primary packet */
if (encode_open_type(buf, &len, msg, msg_len) < 0)
return -1;
/* Encode the appropriate type of error recovery information */
switch (s->error_correction_scheme)
{
case UDPTL_ERROR_CORRECTION_NONE:
/* Encode the error recovery type */
buf[len++] = 0x00;
/* The number of entries will always be zero, so it is pointless allowing
for the fragmented case here. */
if (encode_length(buf, &len, 0) < 0)
return -1;
break;
case UDPTL_ERROR_CORRECTION_REDUNDANCY:
/* Encode the error recovery type */
buf[len++] = 0x00;
if (s->tx_seq_no > s->error_correction_entries)
entries = s->error_correction_entries;
else
entries = s->tx_seq_no;
/* The number of entries will always be small, so it is pointless allowing
for the fragmented case here. */
if (encode_length(buf, &len, entries) < 0)
return -1;
/* Encode the elements */
for (i = 0; i < entries; i++)
{
j = (entry - i - 1) & UDPTL_BUF_MASK;
if (encode_open_type(buf, &len, s->tx[j].buf, s->tx[j].buf_len) < 0)
return -1;
}
break;
case UDPTL_ERROR_CORRECTION_FEC:
span = s->error_correction_span;
entries = s->error_correction_entries;
if (seq < s->error_correction_span*s->error_correction_entries)
{
/* In the initial stages, wind up the FEC smoothly */
entries = seq/s->error_correction_span;
if (seq < s->error_correction_span)
span = 0;
}
/* Encode the error recovery type */
buf[len++] = 0x80;
/* Span is defined as an inconstrained integer, which it dumb. It will only
ever be a small value. Treat it as such. */
buf[len++] = 1;
buf[len++] = span;
/* The number of entries is defined as a length, but will only ever be a small
value. Treat it as such. */
buf[len++] = entries;
for (m = 0; m < entries; m++)
{
/* Make an XOR'ed entry the maximum length */
limit = (entry + m) & UDPTL_BUF_MASK;
high_tide = 0;
for (i = (limit - span*entries) & UDPTL_BUF_MASK; i != limit; i = (i + entries) & UDPTL_BUF_MASK)
{
if (high_tide < s->tx[i].buf_len)
{
for (j = 0; j < high_tide; j++)
fec[j] ^= s->tx[i].buf[j];
for ( ; j < s->tx[i].buf_len; j++)
fec[j] = s->tx[i].buf[j];
high_tide = s->tx[i].buf_len;
}
else
{
for (j = 0; j < s->tx[i].buf_len; j++)
fec[j] ^= s->tx[i].buf[j];
}
}
if (encode_open_type(buf, &len, fec, high_tide) < 0)
return -1;
}
break;
}
if (s->verbose)
fprintf(stderr, "\n");
s->tx_seq_no++;
return len;
}
/*- End of function --------------------------------------------------------*/
int udptl_set_error_correction(udptl_state_t *s,
int ec_scheme,
int span,
int entries)
{
switch (ec_scheme)
{
case UDPTL_ERROR_CORRECTION_FEC:
case UDPTL_ERROR_CORRECTION_REDUNDANCY:
case UDPTL_ERROR_CORRECTION_NONE:
s->error_correction_scheme = ec_scheme;
break;
case -1:
/* Just don't change the scheme */
break;
default:
return -1;
}
if (span >= 0)
s->error_correction_span = span;
if (entries >= 0)
s->error_correction_entries = entries;
return 0;
}
/*- End of function --------------------------------------------------------*/
int udptl_get_error_correction(udptl_state_t *s, int *ec_scheme, int *span, int *entries)
{
if (ec_scheme)
*ec_scheme = s->error_correction_scheme;
if (span)
*span = s->error_correction_span;
if (entries)
*entries = s->error_correction_entries;
return 0;
}
/*- End of function --------------------------------------------------------*/
int udptl_set_local_max_datagram(udptl_state_t *s, int max_datagram)
{
s->local_max_datagram_size = max_datagram;
return 0;
}
/*- End of function --------------------------------------------------------*/
int udptl_get_local_max_datagram(udptl_state_t *s)
{
return s->local_max_datagram_size;
}
/*- End of function --------------------------------------------------------*/
int udptl_set_far_max_datagram(udptl_state_t *s, int max_datagram)
{
s->far_max_datagram_size = max_datagram;
return 0;
}
/*- End of function --------------------------------------------------------*/
int udptl_get_far_max_datagram(udptl_state_t *s)
{
return s->far_max_datagram_size;
}
/*- End of function --------------------------------------------------------*/
udptl_state_t *udptl_init(udptl_state_t *s,
int ec_scheme,
int span,
int entries,
udptl_rx_packet_handler_t rx_packet_handler,
void *user_data)
{
int i;
if (rx_packet_handler == NULL)
return NULL;
if (s == NULL)
{
if ((s = (udptl_state_t *) malloc(sizeof(*s))) == NULL)
return NULL;
}
memset(s, 0, sizeof(*s));
s->error_correction_scheme = ec_scheme;
s->error_correction_span = span;
s->error_correction_entries = entries;
s->far_max_datagram_size = LOCAL_FAX_MAX_DATAGRAM;
s->local_max_datagram_size = LOCAL_FAX_MAX_DATAGRAM;
memset(&s->rx, 0, sizeof(s->rx));
memset(&s->tx, 0, sizeof(s->tx));
for (i = 0; i <= UDPTL_BUF_MASK; i++)
{
s->rx[i].buf_len = -1;
s->tx[i].buf_len = -1;
}
s->rx_packet_handler = rx_packet_handler;
s->user_data = user_data;
return s;
}
/*- End of function --------------------------------------------------------*/
int udptl_release(udptl_state_t *s)
{
return 0;
}
/*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/