forked from Mirrors/freeswitch
4a7bbf4ec6
although quite a few things have changed in the test suite
237 lines
7.8 KiB
C
237 lines
7.8 KiB
C
/*
|
|
* SpanDSP - a series of DSP components for telephony
|
|
*
|
|
* noise_tests.c
|
|
*
|
|
* Written by Steve Underwood <steveu@coppice.org>
|
|
*
|
|
* Copyright (C) 2005 Steve Underwood
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/*! \page noise_tests_page Noise generator tests
|
|
\section noise_tests_page_sec_1 What does it do?
|
|
*/
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sndfile.h>
|
|
|
|
//#if defined(WITH_SPANDSP_INTERNALS)
|
|
#define SPANDSP_EXPOSE_INTERNAL_STRUCTURES
|
|
//#endif
|
|
|
|
#include "spandsp.h"
|
|
#include "spandsp-sim.h"
|
|
|
|
#if !defined(M_PI)
|
|
# define M_PI 3.14159265358979323846 /* pi */
|
|
#endif
|
|
|
|
#define OUT_FILE_NAME "noise.wav"
|
|
|
|
/* Some simple sanity tests for the noise generation routines */
|
|
|
|
int main (int argc, char *argv[])
|
|
{
|
|
int i;
|
|
int j;
|
|
int level;
|
|
int clip_high;
|
|
int clip_low;
|
|
int quality;
|
|
int total_samples;
|
|
int seed = 1234567;
|
|
int outframes;
|
|
int16_t value;
|
|
double total;
|
|
double x;
|
|
double p;
|
|
double o;
|
|
int bins[65536];
|
|
int16_t amp[1024];
|
|
noise_state_t noise_source;
|
|
SNDFILE *outhandle;
|
|
|
|
if ((outhandle = sf_open_telephony_write(OUT_FILE_NAME, 1)) == NULL)
|
|
{
|
|
fprintf(stderr, " Cannot create audio file '%s'\n", OUT_FILE_NAME);
|
|
exit(2);
|
|
}
|
|
|
|
for (quality = 7; quality <= 20; quality += (20 - 7))
|
|
{
|
|
/* Generate AWGN at several RMS levels between -50dBOv and 0dBOv. Noise is
|
|
generated for a large number of samples (1,000,000), and the RMS value
|
|
of the noise is calculated along the way. If the resulting level is
|
|
close to the requested RMS level, at least the scaling of the noise
|
|
should be Ok. At high levels some clipping may distort the result a
|
|
little. */
|
|
printf("Testing AWGN power, with quality %d\n", quality);
|
|
for (level = -50; level <= 0; level += 5)
|
|
{
|
|
clip_high = 0;
|
|
clip_low = 0;
|
|
total = 0.0;
|
|
noise_init_dbov(&noise_source, seed, (float) level, NOISE_CLASS_AWGN, quality);
|
|
total_samples = 1000000;
|
|
for (i = 0; i < total_samples; i++)
|
|
{
|
|
value = noise(&noise_source);
|
|
if (value == 32767)
|
|
clip_high++;
|
|
else if (value == -32768)
|
|
clip_low++;
|
|
total += ((double) value)*((double) value);
|
|
}
|
|
printf ("RMS = %.3f (expected %d) %.2f%% error [clipped samples %d+%d]\n",
|
|
10.0*log10((total/total_samples)/(32768.0*32768.0) + 1.0e-10),
|
|
level,
|
|
100.0*(1.0 - sqrt(total/total_samples)/(pow(10.0, level/20.0)*32768.0)),
|
|
clip_low,
|
|
clip_high);
|
|
if (level < -5 && fabs(10.0*log10((total/total_samples)/(32768.0*32768.0) + 1.0e-10) - level) > 0.2)
|
|
{
|
|
printf("Test failed\n");
|
|
exit(2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now look at the statistical spread of the results, by collecting data in
|
|
bins from a large number of samples. Use a fairly high noise level, but
|
|
low enough to avoid significant clipping. Use the Gaussian model to
|
|
predict the real probability, and present the results for graphing. */
|
|
quality = 7;
|
|
printf("Testing the statistical spread of AWGN, with quality %d\n", quality);
|
|
memset(bins, 0, sizeof(bins));
|
|
clip_high = 0;
|
|
clip_low = 0;
|
|
level = -15;
|
|
noise_init_dbov(&noise_source, seed, (float) level, NOISE_CLASS_AWGN, quality);
|
|
total_samples = 10000000;
|
|
for (i = 0; i < total_samples; i++)
|
|
{
|
|
value = noise(&noise_source);
|
|
if (value == 32767)
|
|
clip_high++;
|
|
else if (value == -32768)
|
|
clip_low++;
|
|
bins[value + 32768]++;
|
|
}
|
|
/* Find the RMS power level to expect */
|
|
o = pow(10.0, level/20.0)*(32768.0*0.70711);
|
|
for (i = 0; i < 65536 - 10; i++)
|
|
{
|
|
x = i - 32768;
|
|
/* Find the real probability for this bin */
|
|
p = (1.0/(o*sqrt(2.0*M_PI)))*exp(-(x*x)/(2.0*o*o));
|
|
/* Now do a little smoothing on the real data to get a reasonably
|
|
steady answer */
|
|
x = 0;
|
|
for (j = 0; j < 10; j++)
|
|
x += bins[i + j];
|
|
x /= 10.0;
|
|
x /= total_samples;
|
|
/* Now send it out for graphing. */
|
|
if (p > 0.0000001)
|
|
printf("%6d %.7f %.7f\n", i - 32768, x, p);
|
|
}
|
|
|
|
printf("Generating AWGN at -15dBOv to file\n");
|
|
for (j = 0; j < 50; j++)
|
|
{
|
|
for (i = 0; i < 1024; i++)
|
|
amp[i] = noise(&noise_source);
|
|
outframes = sf_writef_short(outhandle, amp, 1024);
|
|
if (outframes != 1024)
|
|
{
|
|
fprintf(stderr, " Error writing audio file\n");
|
|
exit(2);
|
|
}
|
|
}
|
|
|
|
/* Generate Hoth noise at several RMS levels between -50dBm and 0dBm. Noise
|
|
is generated for a large number of samples (1,000,000), and the RMS value
|
|
of the noise is calculated along the way. If the resulting level is
|
|
close to the requested RMS level, at least the scaling of the noise
|
|
should be Ok. At high levels some clipping may distort the result a
|
|
little. */
|
|
quality = 7;
|
|
printf("Testing Hoth noise power, with quality %d\n", quality);
|
|
for (level = -50; level <= 0; level += 5)
|
|
{
|
|
clip_high = 0;
|
|
clip_low = 0;
|
|
total = 0.0;
|
|
noise_init_dbov(&noise_source, seed, (float) level, NOISE_CLASS_HOTH, quality);
|
|
total_samples = 1000000;
|
|
for (i = 0; i < total_samples; i++)
|
|
{
|
|
value = noise(&noise_source);
|
|
if (value == 32767)
|
|
clip_high++;
|
|
else if (value == -32768)
|
|
clip_low++;
|
|
total += ((double) value)*((double) value);
|
|
}
|
|
printf ("RMS = %.3f (expected %d) %.2f%% error [clipped samples %d+%d]\n",
|
|
10.0*log10((total/total_samples)/(32768.0*32768.0) + 1.0e-10),
|
|
level,
|
|
100.0*(1.0 - sqrt(total/total_samples)/(pow(10.0, level/20.0)*32768.0)),
|
|
clip_low,
|
|
clip_high);
|
|
if (level < -5 && fabs(10.0*log10((total/total_samples)/(32768.0*32768.0) + 1.0e-10) - level) > 0.2)
|
|
{
|
|
printf("Test failed\n");
|
|
exit(2);
|
|
}
|
|
}
|
|
|
|
quality = 7;
|
|
printf("Generating Hoth noise at -15dBOv to file\n");
|
|
level = -15;
|
|
noise_init_dbov(&noise_source, seed, (float) level, NOISE_CLASS_HOTH, quality);
|
|
for (j = 0; j < 50; j++)
|
|
{
|
|
for (i = 0; i < 1024; i++)
|
|
amp[i] = noise(&noise_source);
|
|
outframes = sf_writef_short(outhandle, amp, 1024);
|
|
if (outframes != 1024)
|
|
{
|
|
fprintf(stderr, " Error writing audio file\n");
|
|
exit(2);
|
|
}
|
|
}
|
|
|
|
if (sf_close_telephony(outhandle))
|
|
{
|
|
fprintf(stderr, " Cannot close audio file '%s'\n", OUT_FILE_NAME);
|
|
exit(2);
|
|
}
|
|
|
|
printf("Tests passed.\n");
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
/*- End of file ------------------------------------------------------------*/
|