forked from Mirrors/freeswitch
314ae8b6f3
git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@11535 d0543943-73ff-0310-b7d9-9358b9ac24b2
147 lines
4.5 KiB
C
147 lines
4.5 KiB
C
/*
|
|
* SpanDSP - a series of DSP components for telephony
|
|
*
|
|
* awgn_tests.c
|
|
*
|
|
* Written by Steve Underwood <steveu@coppice.org>
|
|
*
|
|
* Copyright (C) 2001 Steve Underwood
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* $Id: awgn_tests.c,v 1.18 2008/11/30 12:38:27 steveu Exp $
|
|
*/
|
|
|
|
/*! \page awgn_tests_page AWGN tests
|
|
\section awgn_tests_page_sec_1 What does it do?
|
|
*/
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
//#if defined(WITH_SPANDSP_INTERNALS)
|
|
#define SPANDSP_EXPOSE_INTERNAL_STRUCTURES
|
|
//#endif
|
|
|
|
#include "spandsp.h"
|
|
|
|
#if !defined(M_PI)
|
|
# define M_PI 3.14159265358979323846 /* pi */
|
|
#endif
|
|
|
|
#define OUT_FILE_NAME "awgn.wav"
|
|
|
|
/* Some simple sanity tests for the Gaussian noise generation routines */
|
|
|
|
int main (int argc, char *argv[])
|
|
{
|
|
int i;
|
|
int j;
|
|
int clip_high;
|
|
int clip_low;
|
|
int total_samples;
|
|
int idum = 1234567;
|
|
int16_t value;
|
|
double total;
|
|
double x;
|
|
double p;
|
|
double o;
|
|
double error;
|
|
int bins[65536];
|
|
awgn_state_t noise_source;
|
|
|
|
/* Generate noise at several RMS levels between -50dBm and 0dBm. Noise is
|
|
generated for a large number of samples (1,000,000), and the RMS value
|
|
of the noise is calculated along the way. If the resulting level is
|
|
close to the requested RMS level, at least the scaling of the noise
|
|
should be Ok. At high level some clipping may distort the result a
|
|
little. */
|
|
for (j = -50; j <= 0; j += 5)
|
|
{
|
|
clip_high = 0;
|
|
clip_low = 0;
|
|
total = 0.0;
|
|
awgn_init_dbm0(&noise_source, idum, (float) j);
|
|
total_samples = 1000000;
|
|
for (i = 0; i < total_samples; i++)
|
|
{
|
|
value = awgn(&noise_source);
|
|
if (value == 32767)
|
|
clip_high++;
|
|
else if (value == -32768)
|
|
clip_low++;
|
|
total += ((double) value)*((double) value);
|
|
}
|
|
error = 100.0*(1.0 - sqrt(total/total_samples)/noise_source.rms);
|
|
printf("RMS = %.3f (expected %d) %.2f%% error [clipped samples %d+%d]\n",
|
|
log10(sqrt(total/total_samples)/32768.0)*20.0 + DBM0_MAX_POWER,
|
|
j,
|
|
error,
|
|
clip_low,
|
|
clip_high);
|
|
/* We don't check the result at 0dBm0, as there will definitely be a lot of error due to clipping */
|
|
if (j < 0 && fabs(error) > 0.2)
|
|
{
|
|
printf("Test failed.\n");
|
|
exit(2);
|
|
}
|
|
}
|
|
/* Now look at the statistical spread of the results, by collecting data in
|
|
bins from a large number of samples. Use a fairly high noise level, but
|
|
low enough to avoid significant clipping. Use the Gaussian model to
|
|
predict the real probability, and present the results for graphing. */
|
|
memset(bins, 0, sizeof(bins));
|
|
clip_high = 0;
|
|
clip_low = 0;
|
|
awgn_init_dbm0(&noise_source, idum, -15);
|
|
total_samples = 10000000;
|
|
for (i = 0; i < total_samples; i++)
|
|
{
|
|
value = awgn(&noise_source);
|
|
if (value == 32767)
|
|
clip_high++;
|
|
else if (value == -32768)
|
|
clip_low++;
|
|
bins[value + 32768]++;
|
|
}
|
|
o = noise_source.rms;
|
|
for (i = 0; i < 65536 - 10; i++)
|
|
{
|
|
x = i - 32768;
|
|
/* Find the real probability for this bin */
|
|
p = (1.0/(o*sqrt(2.0*M_PI)))*exp(-(x*x)/(2.0*o*o));
|
|
/* Now do a little smoothing on the real data to get a reasonably
|
|
steady answer */
|
|
x = 0;
|
|
for (j = 0; j < 10; j++)
|
|
x += bins[i + j];
|
|
x /= 10.0;
|
|
x /= total_samples;
|
|
/* Now send it out for graphing. */
|
|
printf("%6d %.7f %.7f\n", i - 32768, x, p);
|
|
}
|
|
|
|
printf("Tests passed.\n");
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
/*- End of file ------------------------------------------------------------*/
|