/* * libZRTP SDK library, implements the ZRTP secure VoIP protocol. * Copyright (c) 2006-2009 Philip R. Zimmermann. All rights reserved. * Contact: http://philzimmermann.com * For licensing and other legal details, see the file zrtp_legal.c. */ #include "zrtp.h" /* Size of extra random data to approximate a uniform distribution mod n */ #define UNIFORMBYTES 8 /*============================================================================*/ /* Bignum Shorthand Functions */ /*============================================================================*/ int bnAddMod_ (struct BigNum *rslt, struct BigNum *n1, struct BigNum *mod) { bnAdd (rslt, n1); if (bnCmp (rslt, mod) >= 0) { bnSub (rslt, mod); } return 0; } int bnAddQMod_ (struct BigNum *rslt, unsigned n1, struct BigNum *mod) { bnAddQ (rslt, n1); if (bnCmp (rslt, mod) >= 0) { bnSub (rslt, mod); } return 0; } int bnSubMod_ (struct BigNum *rslt, struct BigNum *n1, struct BigNum *mod) { if (bnCmp (rslt, n1) < 0) { bnAdd (rslt, mod); } bnSub (rslt, n1); return 0; } int bnSubQMod_ (struct BigNum *rslt, unsigned n1, struct BigNum *mod) { if (bnCmpQ (rslt, n1) < 0) { bnAdd (rslt, mod); } bnSubQ (rslt, n1); return 0; } int bnMulMod_ (struct BigNum *rslt, struct BigNum *n1, struct BigNum *n2, struct BigNum *mod) { bnMul (rslt, n1, n2); bnMod (rslt, rslt, mod); return 0; } int bnMulQMod_ (struct BigNum *rslt, struct BigNum *n1, unsigned n2, struct BigNum *mod) { bnMulQ (rslt, n1, n2); bnMod (rslt, rslt, mod); return 0; } int bnSquareMod_ (struct BigNum *rslt, struct BigNum *n1, struct BigNum *mod) { bnSquare (rslt, n1); bnMod (rslt, rslt, mod); return 0; } /*============================================================================*/ /* Elliptic Curve arithmetic */ /*============================================================================*/ /* Add two elliptic curve points. Any of them may be the same object. */ int zrtp_ecAdd ( struct BigNum *rsltx, struct BigNum *rslty, struct BigNum *p1x, struct BigNum *p1y, struct BigNum *p2x, struct BigNum *p2y, struct BigNum *mod) { struct BigNum trsltx, trslty; struct BigNum t1, gam; struct BigNum bnzero; bnBegin (&bnzero); /* Check for an operand being zero */ if (bnCmp (p1x, &bnzero) == 0 && bnCmp (p1y, &bnzero) == 0) { bnCopy (rsltx, p2x); bnCopy (rslty, p2y); bnEnd (&bnzero); return 0; } if (bnCmp (p2x, &bnzero) == 0 && bnCmp (p2y, &bnzero) == 0) { bnCopy (rsltx, p1x); bnCopy (rslty, p1y); bnEnd (&bnzero); return 0; } /* Check if p1 == -p2 and return 0 if so */ if (bnCmp (p1x, p2x) == 0) { struct BigNum tsum; bnBegin (&tsum); bnCopy (&tsum, p1x); bnAddMod_ (&tsum, p2x, mod); if (bnCmp (&tsum, &bnzero) == 0) { bnSetQ (rsltx, 0); bnSetQ (rslty, 0); bnEnd (&tsum); bnEnd (&bnzero); return 0; } bnEnd (&tsum); } bnBegin (&t1); bnBegin (&gam); bnBegin (&trsltx); bnBegin (&trslty); /* Check for doubling, different formula for gamma */ if (bnCmp (p1x, p2x) == 0 && bnCmp (p1y, p2y) == 0) { bnCopy (&t1, p1y); bnAddMod_ (&t1, p1y, mod); bnInv (&t1, &t1, mod); bnSquareMod_ (&gam, p1x, mod); bnMulQMod_ (&gam, &gam, 3, mod); bnSubQMod_ (&gam, 3, mod); bnMulMod_ (&gam, &gam, &t1, mod); } else { bnCopy (&t1, p2x); bnSubMod_ (&t1, p1x, mod); bnInv (&t1, &t1, mod); bnCopy (&gam, p2y); bnSubMod_ (&gam, p1y, mod); bnMulMod_ (&gam, &gam, &t1, mod); } bnSquareMod_ (&trsltx, &gam, mod); bnSubMod_ (&trsltx, p1x, mod); bnSubMod_ (&trsltx, p2x, mod); bnCopy (&trslty, p1x); bnSubMod_ (&trslty, &trsltx, mod); bnMulMod_ (&trslty, &trslty, &gam, mod); bnSubMod_ (&trslty, p1y, mod); bnCopy (rsltx, &trsltx); bnCopy (rslty, &trslty); bnEnd (&t1); bnEnd (&gam); bnEnd (&trsltx); bnEnd (&trslty); bnEnd (&bnzero); return 0; } int zrtp_ecMul ( struct BigNum *rsltx, struct BigNum *rslty, struct BigNum *mult, struct BigNum *basex, struct BigNum *basey, struct BigNum *mod) { struct BigNum bnzero; struct BigNum tbasex, tbasey; struct BigNum trsltx, trslty; struct BigNum tmult; bnBegin (&bnzero); bnBegin (&tbasex); bnBegin (&tbasey); bnBegin (&trsltx); bnBegin (&trslty); bnBegin (&tmult); /* Initialize result to 0 before additions */ bnSetQ (&trsltx, 0); bnSetQ (&trslty, 0); /* Make copies of base and multiplier */ bnCopy (&tbasex, basex); bnCopy (&tbasey, basey); bnCopy (&tmult, mult); while (bnCmp (&tmult, &bnzero) > 0) { /* Test lsb of mult */ unsigned lsw = bnLSWord (&tmult); if (lsw & 1) { /* Add base to result */ zrtp_ecAdd (&trsltx, &trslty, &trsltx, &trslty, &tbasex, &tbasey, mod); } /* Double the base */ zrtp_ecAdd (&tbasex, &tbasey, &tbasex, &tbasey, &tbasex, &tbasey, mod); /* Shift multiplier right */ bnRShift (&tmult, 1); } bnCopy (rsltx, &trsltx); bnCopy (rslty, &trslty); bnEnd (&bnzero); bnEnd (&tbasex); bnEnd (&tbasey); bnEnd (&trsltx); bnEnd (&trslty); bnEnd (&tmult); return 0; } /*----------------------------------------------------------------------------*/ /* Choose a random point on the elliptic curve. */ /* Provision is made to use a given point from test vectors. */ /* pkx and pky are the output point, sv is output discrete log */ /* Input base is Gx, Gy; curve field modulus is P; curve order is n. */ /*----------------------------------------------------------------------------*/ zrtp_status_t zrtp_ec_random_point( zrtp_global_t *zrtp, struct BigNum *P, struct BigNum *n, struct BigNum *Gx, struct BigNum *Gy, struct BigNum *pkx, struct BigNum *pky, struct BigNum *sv, uint8_t *test_sv_data, size_t test_sv_data_len) { zrtp_status_t s = zrtp_status_fail; unsigned char* buffer = zrtp_sys_alloc(sizeof(zrtp_uchar1024_t)); if (!buffer) { return zrtp_status_alloc_fail; } zrtp_memset(buffer, 0, sizeof(zrtp_uchar1024_t)); do { if (test_sv_data_len != 0) { /* Force certain secret value */ if (bnBytes(P) != test_sv_data_len) { break; } zrtp_memcpy(buffer+UNIFORMBYTES, test_sv_data, test_sv_data_len); } else { /* Choose random value, larger than needed so it will be uniform */ if (bnBytes(P)+UNIFORMBYTES != (uint32_t)zrtp_randstr(zrtp, buffer, bnBytes(P)+UNIFORMBYTES)) { break; /* if we can't generate random string - fail initialization */ } } bnInsertBigBytes(sv, (const unsigned char *)buffer, 0, bnBytes(P)+UNIFORMBYTES); bnMod(sv, sv, n); zrtp_ecMul(pkx, pky, sv, Gx, Gy, P); s = zrtp_status_ok; } while (0); if (buffer) { zrtp_sys_free(buffer); } return s; } /*============================================================================*/ /* Curve parameters */ /*============================================================================*/ uint8_t P_256_data[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; uint8_t n_256_data[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51 }; uint8_t b_256_data[] = { 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b }; uint8_t Gx_256_data[] = { 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96 }; uint8_t Gy_256_data[] = { 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5 }; uint8_t P_384_data[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF }; uint8_t n_384_data[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC7, 0x63, 0x4D, 0x81, 0xF4, 0x37, 0x2D, 0xDF, 0x58, 0x1A, 0x0D, 0xB2, 0x48, 0xB0, 0xA7, 0x7A, 0xEC, 0xEC, 0x19, 0x6A, 0xCC, 0xC5, 0x29, 0x73 }; uint8_t b_384_data[] = { 0xb3, 0x31, 0x2f, 0xa7, 0xe2, 0x3e, 0xe7, 0xe4, 0x98, 0x8e, 0x05, 0x6b, 0xe3, 0xf8, 0x2d, 0x19, 0x18, 0x1d, 0x9c, 0x6e, 0xfe, 0x81, 0x41, 0x12, 0x03, 0x14, 0x08, 0x8f, 0x50, 0x13, 0x87, 0x5a, 0xc6, 0x56, 0x39, 0x8d, 0x8a, 0x2e, 0xd1, 0x9d, 0x2a, 0x85, 0xc8, 0xed, 0xd3, 0xec, 0x2a, 0xef }; uint8_t Gx_384_data[] = { 0xaa, 0x87, 0xca, 0x22, 0xbe, 0x8b, 0x05, 0x37, 0x8e, 0xb1, 0xc7, 0x1e, 0xf3, 0x20, 0xad, 0x74, 0x6e, 0x1d, 0x3b, 0x62, 0x8b, 0xa7, 0x9b, 0x98, 0x59, 0xf7, 0x41, 0xe0, 0x82, 0x54, 0x2a, 0x38, 0x55, 0x02, 0xf2, 0x5d, 0xbf, 0x55, 0x29, 0x6c, 0x3a, 0x54, 0x5e, 0x38, 0x72, 0x76, 0x0a, 0xb7 }; uint8_t Gy_384_data[] = { 0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf, 0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c, 0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0x0a, 0x60, 0xb1, 0xce, 0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f }; uint8_t P_521_data[] = { 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; uint8_t n_521_data[] = { 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFA, 0x51, 0x86, 0x87, 0x83, 0xBF, 0x2F, 0x96, 0x6B, 0x7F, 0xCC, 0x01, 0x48, 0xF7, 0x09, 0xA5, 0xD0, 0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C, 0x47, 0xAE, 0xBB, 0x6F, 0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09 }; uint8_t b_521_data[] = { 0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, 0x3f, 0x00 }; uint8_t Gx_521_data[] = { 0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, 0xbd, 0x66 }; uint8_t Gy_521_data[] = { 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50 }; /*----------------------------------------------------------------------------*/ /* Initialize the curve parameters struct */ zrtp_status_t zrtp_ec_init_params( struct zrtp_ec_params *params, uint32_t bits ) { unsigned ec_bytes = (bits+7) / 8; params->ec_bits = bits; switch (bits) { case 256: zrtp_memcpy (params->P_data, P_256_data, ec_bytes); zrtp_memcpy (params->n_data, n_256_data, ec_bytes); zrtp_memcpy (params->b_data, b_256_data, ec_bytes); zrtp_memcpy (params->Gx_data, Gx_256_data, ec_bytes); zrtp_memcpy (params->Gy_data, Gy_256_data, ec_bytes); break; case 384: zrtp_memcpy (params->P_data, P_384_data, ec_bytes); zrtp_memcpy (params->n_data, n_384_data, ec_bytes); zrtp_memcpy (params->b_data, b_384_data, ec_bytes); zrtp_memcpy (params->Gx_data, Gx_384_data, ec_bytes); zrtp_memcpy (params->Gy_data, Gy_384_data, ec_bytes); break; case 521: zrtp_memcpy (params->P_data, P_521_data, ec_bytes); zrtp_memcpy (params->n_data, n_521_data, ec_bytes); zrtp_memcpy (params->b_data, b_521_data, ec_bytes); zrtp_memcpy (params->Gx_data, Gx_521_data, ec_bytes); zrtp_memcpy (params->Gy_data, Gy_521_data, ec_bytes); break; default: return zrtp_status_bad_param; } return zrtp_status_ok; }