/* * Copyright (c) 1996, 1998 by Internet Software Consortium. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS * ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE * CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS * SOFTWARE. */ /* * Portions Copyright (c) 1995 by International Business Machines, Inc. * * International Business Machines, Inc. (hereinafter called IBM) grants * permission under its copyrights to use, copy, modify, and distribute this * Software with or without fee, provided that the above copyright notice and * all paragraphs of this notice appear in all copies, and that the name of IBM * not be used in connection with the marketing of any product incorporating * the Software or modifications thereof, without specific, written prior * permission. * * To the extent it has a right to do so, IBM grants an immunity from suit * under its patents, if any, for the use, sale or manufacture of products to * the extent that such products are used for performing Domain Name System * dynamic updates in TCP/IP networks by means of the Software. No immunity is * granted for any product per se or for any other function of any product. * * THE SOFTWARE IS PROVIDED "AS IS", AND IBM DISCLAIMS ALL WARRANTIES, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, * DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE, EVEN * IF IBM IS APPRISED OF THE POSSIBILITY OF SUCH DAMAGES. */ #include #include #ifndef _MSC_VER #include #endif #ifdef HAVE_SYS_SOCKET_H #include #endif #ifdef HAVE_NETINET_IN_H #include #endif #ifdef HAVE_ARPA_INET_H #include #endif #include #include #include #include #include static const char Base32[] = "abcdefghijklmnopqrstuvwxyz234567"; /* "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567";*/ /* 00000000001111111111222222222233 01234567890123456789012345678901*/ static const char Base32_extended_hex[] = /* "0123456789ABCDEFGHIJKLMNOPQRSTUV";*/ "0123456789abcdefghijklmnopqrstuv"; static const char Pad32 = '='; /* (From RFC3548 and draft-josefsson-rfc3548bis-00.txt) 5. Base 32 Encoding The Base 32 encoding is designed to represent arbitrary sequences of octets in a form that needs to be case insensitive but need not be humanly readable. A 33-character subset of US-ASCII is used, enabling 5 bits to be represented per printable character. (The extra 33rd character, "=", is used to signify a special processing function.) The encoding process represents 40-bit groups of input bits as output strings of 8 encoded characters. Proceeding from left to right, a 40-bit input group is formed by concatenating 5 8bit input groups. These 40 bits are then treated as 8 concatenated 5-bit groups, each of which is translated into a single digit in the base 32 alphabet. When encoding a bit stream via the base 32 encoding, the bit stream must be presumed to be ordered with the most-significant-bit first. That is, the first bit in the stream will be the high-order bit in the first 8bit byte, and the eighth bit will be the low-order bit in the first 8bit byte, and so on. Each 5-bit group is used as an index into an array of 32 printable characters. The character referenced by the index is placed in the output string. These characters, identified in Table 3, below, are selected from US-ASCII digits and uppercase letters. Table 3: The Base 32 Alphabet Value Encoding Value Encoding Value Encoding Value Encoding 0 A 9 J 18 S 27 3 1 B 10 K 19 T 28 4 2 C 11 L 20 U 29 5 3 D 12 M 21 V 30 6 4 E 13 N 22 W 31 7 5 F 14 O 23 X 6 G 15 P 24 Y (pad) = 7 H 16 Q 25 Z 8 I 17 R 26 2 Special processing is performed if fewer than 40 bits are available at the end of the data being encoded. A full encoding quantum is always completed at the end of a body. When fewer than 40 input bits are available in an input group, zero bits are added (on the right) to form an integral number of 5-bit groups. Padding at the end of the data is performed using the "=" character. Since all base 32 input is an integral number of octets, only the following cases can arise: (1) the final quantum of encoding input is an integral multiple of 40 bits; here, the final unit of encoded output will be an integral multiple of 8 characters with no "=" padding, (2) the final quantum of encoding input is exactly 8 bits; here, the final unit of encoded output will be two characters followed by six "=" padding characters, (3) the final quantum of encoding input is exactly 16 bits; here, the final unit of encoded output will be four characters followed by four "=" padding characters, (4) the final quantum of encoding input is exactly 24 bits; here, the final unit of encoded output will be five characters followed by three "=" padding characters, or (5) the final quantum of encoding input is exactly 32 bits; here, the final unit of encoded output will be seven characters followed by one "=" padding character. 6. Base 32 Encoding with Extended Hex Alphabet The following description of base 32 is due to [7]. This encoding should not be regarded as the same as the "base32" encoding, and should not be referred to as only "base32". One property with this alphabet, that the base64 and base32 alphabet lack, is that encoded data maintain its sort order when the encoded data is compared bit-wise. This encoding is identical to the previous one, except for the alphabet. The new alphabet is found in table 4. Table 4: The "Extended Hex" Base 32 Alphabet Value Encoding Value Encoding Value Encoding Value Encoding 0 0 9 9 18 I 27 R 1 1 10 A 19 J 28 S 2 2 11 B 20 K 29 T 3 3 12 C 21 L 30 U 4 4 13 D 22 M 31 V 5 5 14 E 23 N 6 6 15 F 24 O (pad) = 7 7 16 G 25 P 8 8 17 H 26 Q */ int ldns_b32_ntop_ar(uint8_t const *src, size_t srclength, char *target, size_t targsize, const char B32_ar[]) { size_t datalength = 0; uint8_t input[5]; uint8_t output[8]; size_t i; memset(output, 0, 8); while (4 < srclength) { input[0] = *src++; input[1] = *src++; input[2] = *src++; input[3] = *src++; input[4] = *src++; srclength -= 5; output[0] = (input[0] & 0xf8) >> 3; output[1] = ((input[0] & 0x07) << 2) + ((input[1] & 0xc0) >> 6); output[2] = (input[1] & 0x3e) >> 1; output[3] = ((input[1] & 0x01) << 4) + ((input[2] & 0xf0) >> 4); output[4] = ((input[2] & 0x0f) << 1) + ((input[3] & 0x80) >> 7); output[5] = (input[3] & 0x7c) >> 2; output[6] = ((input[3] & 0x03) << 3) + ((input[4] & 0xe0) >> 5); output[7] = (input[4] & 0x1f); assert(output[0] < 32); assert(output[1] < 32); assert(output[2] < 32); assert(output[3] < 32); assert(output[4] < 32); assert(output[5] < 32); assert(output[6] < 32); assert(output[7] < 32); if (datalength + 8 > targsize) { return (-1); } target[datalength++] = B32_ar[output[0]]; target[datalength++] = B32_ar[output[1]]; target[datalength++] = B32_ar[output[2]]; target[datalength++] = B32_ar[output[3]]; target[datalength++] = B32_ar[output[4]]; target[datalength++] = B32_ar[output[5]]; target[datalength++] = B32_ar[output[6]]; target[datalength++] = B32_ar[output[7]]; } /* Now we worry about padding. */ if (0 != srclength) { /* Get what's left. */ input[0] = input[1] = input[2] = input[3] = input[4] = (uint8_t) '\0'; for (i = 0; i < srclength; i++) input[i] = *src++; output[0] = (input[0] & 0xf8) >> 3; assert(output[0] < 32); if (srclength >= 1) { output[1] = ((input[0] & 0x07) << 2) + ((input[1] & 0xc0) >> 6); assert(output[1] < 32); output[2] = (input[1] & 0x3e) >> 1; assert(output[2] < 32); } if (srclength >= 2) { output[3] = ((input[1] & 0x01) << 4) + ((input[2] & 0xf0) >> 4); assert(output[3] < 32); } if (srclength >= 3) { output[4] = ((input[2] & 0x0f) << 1) + ((input[3] & 0x80) >> 7); assert(output[4] < 32); output[5] = (input[3] & 0x7c) >> 2; assert(output[5] < 32); } if (srclength >= 4) { output[6] = ((input[3] & 0x03) << 3) + ((input[4] & 0xe0) >> 5); assert(output[6] < 32); } if (datalength + 1 > targsize) { return (-2); } target[datalength++] = B32_ar[output[0]]; if (srclength >= 1) { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = B32_ar[output[1]]; if (srclength == 1 && output[2] == 0) { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = Pad32; } else { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = B32_ar[output[2]]; } } else { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = Pad32; if (datalength + 1 > targsize) { return (-2); } target[datalength++] = Pad32; } if (srclength >= 2) { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = B32_ar[output[3]]; } else { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = Pad32; } if (srclength >= 3) { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = B32_ar[output[4]]; if (srclength == 3 && output[5] == 0) { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = Pad32; } else { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = B32_ar[output[5]]; } } else { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = Pad32; if (datalength + 1 > targsize) { return (-2); } target[datalength++] = Pad32; } if (srclength >= 4) { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = B32_ar[output[6]]; } else { if (datalength + 1 > targsize) { return (-2); } target[datalength++] = Pad32; } if (datalength + 1 > targsize) { return (-2); } target[datalength++] = Pad32; } if (datalength+1 > targsize) { return (int) (datalength); } target[datalength] = '\0'; /* Returned value doesn't count \0. */ return (int) (datalength); } int ldns_b32_ntop(uint8_t const *src, size_t srclength, char *target, size_t targsize) { return ldns_b32_ntop_ar(src, srclength, target, targsize, Base32); } /* deprecated, here for backwards compatibility */ int b32_ntop(uint8_t const *src, size_t srclength, char *target, size_t targsize) { return ldns_b32_ntop_ar(src, srclength, target, targsize, Base32); } int ldns_b32_ntop_extended_hex(uint8_t const *src, size_t srclength, char *target, size_t targsize) { return ldns_b32_ntop_ar(src, srclength, target, targsize, Base32_extended_hex); } /* deprecated, here for backwards compatibility */ int b32_ntop_extended_hex(uint8_t const *src, size_t srclength, char *target, size_t targsize) { return ldns_b32_ntop_ar(src, srclength, target, targsize, Base32_extended_hex); }