/* * VoIPcodecs - a series of DSP components for telephony * * gsm0610_long_term.c - GSM 06.10 full rate speech codec. * * Written by Steve Underwood * * Copyright (C) 2006 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, or * the Lesser GNU General Public License version 2.1, as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * This code is based on the widely used GSM 06.10 code available from * http://kbs.cs.tu-berlin.de/~jutta/toast.html * * $Id: gsm0610_long_term.c,v 1.11 2008/02/09 15:31:36 steveu Exp $ */ /*! \file */ #ifdef HAVE_CONFIG_H #include #endif #include #include #if defined(HAVE_TGMATH_H) #include #endif #if defined(HAVE_MATH_H) #include #endif #include #include "voipcodecs/telephony.h" #include "voipcodecs/bitstream.h" #include "voipcodecs/dc_restore.h" #include "voipcodecs/gsm0610.h" #include "gsm0610_local.h" /* Table 4.3a Decision level of the LTP gain quantizer */ static const int16_t gsm_DLB[4] = { 6554, 16384, 26214, 32767 }; /* Table 4.3b Quantization levels of the LTP gain quantizer */ static const int16_t gsm_QLB[4] = { 3277, 11469, 21299, 32767 }; /* 4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION */ #if defined(__GNUC__) && defined(__i386__) int32_t gsm0610_max_cross_corr(const int16_t *wt, const int16_t *dp, int16_t *Nc_out) { int32_t lmax; int32_t out; __asm__ __volatile__( " emms;\n" " pushl %%ebx;\n" " movl $0,%%edx;\n" /* Will be maximum inner-product */ " movl $40,%%ebx;\n" " movl %%ebx,%%ecx;\n" /* Will be index of max inner-product */ " subl $80,%%esi;\n" " .p2align 2;\n" "1:\n" " movq (%%edi),%%mm0;\n" " movq (%%esi),%%mm2;\n" " pmaddwd %%mm2,%%mm0;\n" " movq 8(%%edi),%%mm1;\n" " movq 8(%%esi),%%mm2;\n" " pmaddwd %%mm2,%%mm1;\n" " paddd %%mm1,%%mm0;\n" " movq 16(%%edi),%%mm1;\n" " movq 16(%%esi),%%mm2;\n" " pmaddwd %%mm2,%%mm1;\n" " paddd %%mm1,%%mm0;\n" " movq 24(%%edi),%%mm1;\n" " movq 24(%%esi),%%mm2;\n" " pmaddwd %%mm2,%%mm1;\n" " paddd %%mm1,%%mm0;\n" " movq 32(%%edi),%%mm1;\n" " movq 32(%%esi),%%mm2;\n" " pmaddwd %%mm2,%%mm1;\n" " paddd %%mm1,%%mm0;\n" " movq 40(%%edi),%%mm1;\n" " movq 40(%%esi),%%mm2;\n" " pmaddwd %%mm2,%%mm1;\n" " paddd %%mm1,%%mm0;\n" " movq 48(%%edi),%%mm1;\n" " movq 48(%%esi),%%mm2;\n" " pmaddwd %%mm2,%%mm1;\n" " paddd %%mm1,%%mm0;\n" " movq 56(%%edi),%%mm1;\n" " movq 56(%%esi),%%mm2;\n" " pmaddwd %%mm2,%%mm1;\n" " paddd %%mm1,%%mm0;\n" " movq 64(%%edi),%%mm1;\n" " movq 64(%%esi),%%mm2;\n" " pmaddwd %%mm2,%%mm1;\n" " paddd %%mm1,%%mm0;\n" " movq 72(%%edi),%%mm1;\n" " movq 72(%%esi),%%mm2;\n" " pmaddwd %%mm2,%%mm1;\n" " paddd %%mm1,%%mm0;\n" " movq %%mm0,%%mm1;\n" " punpckhdq %%mm0,%%mm1;\n" /* mm1 has high int32 of mm0 dup'd */ " paddd %%mm1,%%mm0;\n" " movd %%mm0,%%eax;\n" /* eax has result */ " cmpl %%edx,%%eax;\n" " jle 2f;\n" " movl %%eax,%%edx;\n" " movl %%ebx,%%ecx;\n" " .p2align 2;\n" "2:\n" " subl $2,%%esi;\n" " incl %%ebx;\n" " cmpl $120,%%ebx;\n" " jle 1b;\n" " popl %%ebx;\n" " emms;\n" : "=d" (lmax), "=c" (out) : "D" (wt), "S" (dp) : "eax" ); *Nc_out = out; return lmax; } /*- End of function --------------------------------------------------------*/ #endif /* This procedure computes the LTP gain (bc) and the LTP lag (Nc) for the long term analysis filter. This is done by calculating a maximum of the cross-correlation function between the current sub-segment short term residual signal d[0..39] (output of the short term analysis filter; for simplification the index of this array begins at 0 and ends at 39 for each sub-segment of the RPE-LTP analysis) and the previous reconstructed short term residual signal dp[ -120 .. -1 ]. A dynamic scaling must be performed to avoid overflow. */ /* This procedure exists in three versions. First, the integer version; then, the two floating point versions (as another function), with or without scaling. */ static int16_t evaluate_ltp_parameters(int16_t d[40], int16_t *dp, // [-120..-1] IN int16_t *Nc_out) { int k; int16_t Nc; int16_t bc; int16_t wt[40]; int32_t L_max; int32_t L_power; int16_t R; int16_t S; int16_t dmax; int16_t scale; int16_t temp; int32_t L_temp; #if !(defined(__GNUC__) && defined(__i386__)) int16_t lambda; #endif /* Search of the optimum scaling of d[0..39]. */ dmax = 0; for (k = 0; k < 40; k++) { temp = d[k]; temp = gsm_abs(temp); if (temp > dmax) dmax = temp; /*endif*/ } /*endfor*/ if (dmax == 0) { temp = 0; } else { assert(dmax > 0); temp = gsm0610_norm((int32_t) dmax << 16); } /*endif*/ if (temp > 6) scale = 0; else scale = (int16_t) (6 - temp); /*endif*/ assert(scale >= 0); /* Initialization of a working array wt */ for (k = 0; k < 40; k++) wt[k] = d[k] >> scale; /*endfor*/ /* Search for the maximum cross-correlation and coding of the LTP lag */ #if defined(__GNUC__) && defined(__i386__) L_max = gsm0610_max_cross_corr(wt, dp, &Nc); #else L_max = 0; Nc = 40; /* index for the maximum cross-correlation */ for (lambda = 40; lambda <= 120; lambda++) { int32_t L_result; L_result = (wt[0]*dp[0 - lambda]) + (wt[1]*dp[1 - lambda]) + (wt[2]*dp[2 - lambda]) + (wt[3]*dp[3 - lambda]) + (wt[4]*dp[4 - lambda]) + (wt[5]*dp[5 - lambda]) + (wt[6]*dp[6 - lambda]) + (wt[7]*dp[7 - lambda]) + (wt[8]*dp[8 - lambda]) + (wt[9]*dp[9 - lambda]) + (wt[10]*dp[10 - lambda]) + (wt[11]*dp[11 - lambda]) + (wt[12]*dp[12 - lambda]) + (wt[13]*dp[13 - lambda]) + (wt[14]*dp[14 - lambda]) + (wt[15]*dp[15 - lambda]) + (wt[16]*dp[16 - lambda]) + (wt[17]*dp[17 - lambda]) + (wt[18]*dp[18 - lambda]) + (wt[19]*dp[19 - lambda]) + (wt[20]*dp[20 - lambda]) + (wt[21]*dp[21 - lambda]) + (wt[22]*dp[22 - lambda]) + (wt[23]*dp[23 - lambda]) + (wt[24]*dp[24 - lambda]) + (wt[25]*dp[25 - lambda]) + (wt[26]*dp[26 - lambda]) + (wt[27]*dp[27 - lambda]) + (wt[28]*dp[28 - lambda]) + (wt[29]*dp[29 - lambda]) + (wt[30]*dp[30 - lambda]) + (wt[31]*dp[31 - lambda]) + (wt[32]*dp[32 - lambda]) + (wt[33]*dp[33 - lambda]) + (wt[34]*dp[34 - lambda]) + (wt[35]*dp[35 - lambda]) + (wt[36]*dp[36 - lambda]) + (wt[37]*dp[37 - lambda]) + (wt[38]*dp[38 - lambda]) + (wt[39]*dp[39 - lambda]); if (L_result > L_max) { Nc = lambda; L_max = L_result; } /*endif*/ } /*endfor*/ #endif *Nc_out = Nc; L_max <<= 1; /* Rescaling of L_max */ assert(scale <= 100 && scale >= -100); L_max = L_max >> (6 - scale); assert(Nc <= 120 && Nc >= 40); /* Compute the power of the reconstructed short term residual signal dp[..] */ L_power = 0; for (k = 0; k < 40; k++) { L_temp = dp[k - Nc] >> 3; L_power += L_temp*L_temp; } /*endfor*/ L_power <<= 1; /* from L_MULT */ /* Normalization of L_max and L_power */ if (L_max <= 0) return 0; /*endif*/ if (L_max >= L_power) return 3; /*endif*/ temp = gsm0610_norm(L_power); R = (int16_t) ((L_max << temp) >> 16); S = (int16_t) ((L_power << temp) >> 16); /* Coding of the LTP gain */ /* Table 4.3a must be used to obtain the level DLB[i] for the quantization of the LTP gain b to get the coded version bc. */ for (bc = 0; bc <= 2; bc++) { if (R <= gsm_mult(S, gsm_DLB[bc])) break; /*endif*/ } /*endfor*/ return bc; } /*- End of function --------------------------------------------------------*/ /* 4.2.12 */ static void long_term_analysis_filtering(int16_t bc, int16_t Nc, int16_t *dp, // previous d [-120..-1] IN int16_t d[40], int16_t dpp[40], int16_t e[40]) { int k; /* In this part, we have to decode the bc parameter to compute the samples of the estimate dpp[0..39]. The decoding of bc needs the use of table 4.3b. The long term residual signal e[0..39] is then calculated to be fed to the RPE encoding section. */ for (k = 0; k < 40; k++) { dpp[k] = gsm_mult_r(gsm_QLB[bc], dp[k - Nc]); e[k] = gsm_sub(d[k], dpp[k]); } /*endfor*/ } /*- End of function --------------------------------------------------------*/ /* 4x for 160 samples */ void gsm0610_long_term_predictor(gsm0610_state_t *s, int16_t d[40], int16_t *dp, // [-120..-1] d' IN int16_t e[40], int16_t dpp[40], int16_t *Nc, int16_t *bc) { vc_assert(d); vc_assert(dp); vc_assert(e); vc_assert(dpp); vc_assert(Nc); vc_assert(bc); *bc = evaluate_ltp_parameters(d, dp, Nc); long_term_analysis_filtering(*bc, *Nc, dp, d, dpp, e); } /*- End of function --------------------------------------------------------*/ /* 4.3.2 */ void gsm0610_long_term_synthesis_filtering(gsm0610_state_t *s, int16_t Ncr, int16_t bcr, int16_t erp[40], int16_t *drp) // [-120..-1] IN, [0..40] OUT { int k; int16_t brp; int16_t drpp; int16_t Nr; /* This procedure uses the bcr and Ncr parameter to realize the long term synthesis filter. The decoding of bcr needs table 4.3b. */ /* Check the limits of Nr. */ Nr = (Ncr < 40 || Ncr > 120) ? s->nrp : Ncr; s->nrp = Nr; assert (Nr >= 40 && Nr <= 120); /* Decode the LTP gain, bcr */ brp = gsm_QLB[bcr]; /* Compute the reconstructed short term residual signal, drp[0..39] */ assert(brp != INT16_MIN); for (k = 0; k < 40; k++) { drpp = gsm_mult_r(brp, drp[k - Nr]); drp[k] = gsm_add(erp[k], drpp); } /*endfor*/ /* Update the reconstructed short term residual signal, drp[-1..-120] */ for (k = 0; k < 120; k++) drp[k - 120] = drp[k - 80]; /*endfor*/ } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/