package tea // Convenience commands. Not part of the Bubble Tea core, but potentially // handy. import ( "time" ) // Every is a command that ticks in sync with the system clock. So, if you // wanted to tick with the system clock every second, minute or hour you // could use this. It's also handy for having different things tick in sync. // // Because we're ticking with the system clock the tick will likely not run for // the entire specified duration. For example, if we're ticking for one minute // and the clock is at 12:34:20 then the next tick will happen at 12:35:00, 40 // seconds later. // // To produce the command, pass a duration and a function which returns // a message containing the time at which the tick occurred. // // type TickMsg time.Time // // cmd := Every(time.Second, func(t time.Time) Msg { // return TickMsg(t) // }) // // Beginners' note: Every sends a single message and won't automatically // dispatch messages at an interval. To do that, you'll want to return another // Every command after receiving your tick message. For example: // // type TickMsg time.Time // // // Send a message every second. // func tickEvery() Cmd { // return Every(time.Second, func(t time.Time) Msg { // return TickMsg(t) // }) // } // // func (m model) Init() Cmd { // // Start ticking. // return tickEvery() // } // // func (m model) Update(msg Msg) (Model, Cmd) { // switch msg.(type) { // case TickMsg: // // Return your Every command again to loop. // return m, tickEvery() // } // return m, nil // } // // Every is analogous to Tick in the Elm Architecture. func Every(duration time.Duration, fn func(time.Time) Msg) Cmd { return func() Msg { n := time.Now() d := n.Truncate(duration).Add(duration).Sub(n) t := time.NewTimer(d) return fn(<-t.C) } } // Tick produces a command at an interval independent of the system clock at // the given duration. That is, the timer begins when precisely when invoked, // and runs for its entire duration. // // To produce the command, pass a duration and a function which returns // a message containing the time at which the tick occurred. // // type TickMsg time.Time // // cmd := Tick(time.Second, func(t time.Time) Msg { // return TickMsg(t) // }) // // Beginners' note: Tick sends a single message and won't automatically // dispatch messages at an interval. To do that, you'll want to return another // Tick command after receiving your tick message. For example: // // type TickMsg time.Time // // func doTick() Cmd { // return Tick(time.Second, func(t time.Time) Msg { // return TickMsg(t) // }) // } // // func (m model) Init() Cmd { // // Start ticking. // return doTick() // } // // func (m model) Update(msg Msg) (Model, Cmd) { // switch msg.(type) { // case TickMsg: // // Return your Tick command again to loop. // return m, doTick() // } // return m, nil // } func Tick(d time.Duration, fn func(time.Time) Msg) Cmd { return func() Msg { t := time.NewTimer(d) return fn(<-t.C) } } // Sequentially produces a command that sequentially executes the given // commands. // The Msg returned is the first non-nil message returned by a Cmd. // // func saveStateCmd() Msg { // if err := save(); err != nil { // return errMsg{err} // } // return nil // } // // cmd := Sequentially(saveStateCmd, Quit) func Sequentially(cmds ...Cmd) Cmd { return func() Msg { for _, cmd := range cmds { if cmd == nil { continue } if msg := cmd(); msg != nil { return msg } } return nil } }